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While it is well known empirically that individual stock returns exhibit momentum (posi-

tive autocorrelation) over short time periods and mean reversion (negative autocorrelation)

related to a value-growth anomaly over long time periods, researchers have found it difficult

to explain theoretically why these time series patterns occur. We describe a competitive

dynamic model in which relatively overconfident traders disagree about the precision of sig-

nals. Greater disagreement leads to more momentum, trading volume, and liquidity. We

calibrate model parameters to fit the short-term momentum and long-term mean reversion

observed in the data. We also confirm empirically the prediction that stocks with higher

trading volume exhibit more momentum.

Our model uses a structure similar to the smooth trading model of Kyle, Obizhaeva

and Wang (2017) but makes several significant modifications. First, instead of focussing

on how imperfect competition affects trading costs and quantities traded, we focus on

how perfect competition affects returns, like Kyle and Lin (2002). This makes it possible

to derive most results analytically and to show that momentum arises naturally even in

a setting of perfect competition. Second, instead of focussing on equilibrium properties

from the perspective of traders regardless of whether their beliefs are empirically correct,

we emphasize the importance of empirically correct beliefs, paying particular attention to

the case when traders are correct on average. This makes it possible to show how return

predictability depends both on traders’ beliefs in the model and empirically correct beliefs,

along the lines of Xiong and Yan (2010). Third, instead of setting the model in continuous

time, the model is set in discrete time. This makes it possible to show that momentum is

stronger when trading opportunities are more frequent. Fourth, instead of assuming that

there is one unobserved component of dividend growth about which traders have private

information, the model assumes that dividend growth has two components, an observed

long-term component and an unobserved short-term component about which traders have

private signals. Our model generates a short-term momentum anomaly due to speculative

trading on disagreement about a short-term growth rate. It also generates a value-growth

anomaly by assuming that all traders equally overestimate the persistence of a long-term

growth rate that they all observe. This makes it possible to match empirically realistic

patterns of short-run momentum and long-run reversal.

Like asset managers in real markets, traders in the model act as if they collect public

and private raw information into databases, engage in research to process this information

into signals, calculate expected returns or alphas from these signals, and construct optimal
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inventories by inputting alphas into risk models. The traders are “relatively overconfi-

dent” in that each symmetrically assigns a higher value to the precision to his own private

signal than the precision of other traders’ signals. Since the values traders assign to all

economically relevant parameters are common knowledge, traders agree to disagree about

the informativeness of their respective signals (Aumann (1976)). We show that expected

returns are predictable, even when the beliefs of traders are “correct on average” in the

sense that traders have correct beliefs about the average precision of all signals, including

their own. This theoretical result contradicts the empirical rational expectations intuition

that prices will aggregate fundamental information correctly when traders are correct on

average, even when individual traders make mistakes (Muth (1961)).

Beliefs Aggregation. Our model highlights mechanisms generating momentum and re-

turn predictability in an infinite horizon, stationary model in which traders disagree about

the precision of private signals. Return predictability first of all results from current prices

being dampened. Price dampening arises from two conceptually different effects that we

call static and dynamic beliefs aggregation.

First, static beliefs aggregation dampens current prices due to the way in which traders’

average expectations are dampened with relatively overconfident beliefs. Traders place

weights on signals proportional to the square root of the signal’s perceived precision. In

equilibrium, this makes the market weight on each signal proportional to the average of the

square roots of the precisions across traders. Under the assumption that traders’ beliefs

are empirically correct on average, the empirically correct signal weight is the square root

of the average of the precisions across traders, not the average of the square roots. Since

Jensen’s inequality implies that the average of the square roots is less than the square

root of the averages, heterogeneous weights dampen the price, making it underreact to the

total amount of private information available in the market and revealed in prices due to

symmetry.

Second, dynamic beliefs aggregation dampens prices due to incentives for short-term trad-

ing resulting in weights on traders’ valuations summing to less than one. Traders not only

agree to disagree about the value of the asset in the present, but they also agree to disagree

about how their valuations will change in the future. Each trader believes that others

traders’ valuations will mean revert faster than implied by the trader’s own beliefs, even

when the other traders’ valuations coincidentally happen to be correct. To exploit this

perceived mean reversion in other traders’ valuations, each trader engages in short-term
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trading, betting against other traders’ valuations and exploiting how they believe these

valuations will change in the near future. Since this short-term trading sometimes makes

traders take positions opposite to what their own long-term valuations imply, this mecha-

nism reflects the logic of a Keynesian beauty contest. Even if a trader thinks it is profitable

to buy the asset based on its long run fundamental value, he may instead sell the asset for

short-term speculative motives because he thinks that other traders place too much weight

on their signals and will revise their valuations downward in the short run.

Short-term trading dampens prices in the sense that prices are not equal to the average

of traders’ buy-and-hold valuations—even though there is no noise trading—because the

weights in the average of valuations sum up to less than one. In contrast, the weights sum up

to exactly one in an analogous one-period model. The dynamic dampening effect also goes

away in dynamic models when traders can only buy and hold. While dynamic dampening

becomes more substantial when traders can trade more frequently, static dampening does

not depend on traders’ trading frequency and may arise in a one-period model.

While traders’ beliefs affect current prices, the properties of return dynamics, such as

autocorrelations at different horizons, also depend on the empirically correct model spec-

ification for dividends, value-relevant non-dividend information, and private information,

which ultimately govern the actual dynamics of prices and returns. We assume that traders

use models with correct structure but with possibly incorrect parameters. This makes re-

turns a function of both the parameters traders use and the correct model parameters.

Our analysis focusses on two mistakes that traders make. First, we assume that traders

are relatively overconfident about their own signals in comparison with the signals of other

traders but are correct on average about the total informativeness of all signals combined.

We show that this generates momentum. Second, we assume that traders overestimate the

persistence of dividend growth so that prices overreact to the long-term growth rate and

exhibit mean-reversion, generating a time-series value effect. More generally, while price

dampening due to relative overconfidence creates a tendency for momentum in returns,

overall return dynamics may in principle be influenced by many factors, which lead to a

complicated autocorrelation structure.

Theoretical Literature. Our paper is related to the literature on beliefs and informa-

tion aggregation. Allen, Morris and Shin (2006) show that when traders have a common

prior and therefore agree about the precision of signals, iterating expectations taken over

different information sets leads to momentum. In a noisy rational expectations version of
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their model, asymmetric information and price drift are associated with excess volatility

and mean reversion, not momentum (Banerjee, Kaniel and Kremer (2009)). When noise

vanishes, the weights on traders’ valuations sum to one and asymmetric information disap-

pears because traders can infer the average signal from prices; there is no dampening and

no momentum. Since our model does not have noise trading, traders also infer the average

expectation from prices. Unlike the model of Allen, Morris and Shin (2006), dampening

arises in our model because expectations are averaged across traders with different beliefs

and the same information set, not because expectations are averaged across traders with

the same beliefs and different information sets.

In a related paper, Banerjee, Kaniel and Kremer (2009) investigate a fully symmetric,

CARA-normal model with two rounds of trading in which no public information is available

and no dividends are paid out when trading takes place, traders have empirically correct

beliefs about the precision of their own information, and traders believe other traders’

information to be less precise than their own. They point out that for momentum to occur,

it is necessary for traders to disagree about future valuations of fundamentals. Their

analytical derivations do not make clear to what extent momentum—when it occurs—is

related to dampening from static and dynamic beliefs aggregation, incorrect beliefs about

others’ signal precision, and the absence of new public information when trade occurs. Our

dynamic steady-state model has no noise trading, has disagreement about the distribution

of private signals, has public and private information arriving every period, and allows

traders to believe their own and others signals are either more or less precise than is

empirically the case. We characterize precisely when momentum occurs and show how it

depends on these different assumptions.

Daniel, Hirshleifer and Subrahmanyam (1998) obtain excess volatility and mean reversion

in a representative agent model when the representative agent is “absolutely overconfident,”

believing information to be more precise than is empirically the case. In contrast, we

obtain momentum when traders are relatively overconfident but correct on average. While

absolute overconfidence tends to generate excess volatility and mean reversion, relative

overconfidence tends to generate momentum.

The assumptions of zero-net-supply and constant absolute risk aversion approximate

markets for individual stocks, where risks are idiosyncratic and wealth effects are not sig-

nificant. By contrast, the interaction of beliefs aggregation with wealth effects, without

private information, are the focus of Detemple and Murthy (1994), Basak (2005), Jouini
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and Napp (2007), Dumas, Kurshev and Uppal (2009), Xiong and Yan (2010), Cujean and

Hasler (2014), Atmaz and Basak (2015), and Ottaviani and Sorensen (2015). Andrei and

Cujean (2017) focus on word-of-mouth communication instead of beliefs aggregation as a

mechanism that generates return predictability. Conceptually, our approach is most similar

to the approach of Campbell and Kyle (1993), who use noise trading to generate excess

volatility and mean reversion instead of relative overconfidence to generate momentum.

Return predictability in our paper is not related to changes in the aggregate amount of

money chasing the return on the risky asset, as in Gruber (1996), Lou (2012), and Vayanos

and Woolley (2013). Due to market clearing the aggregate flow of money into the market

for risky assets is zero, even though individual traders indeed find profitable investment

opportunities and chase returns.

It is fashionable to attribute predictability in asset returns to irrational behavior moti-

vated by psychology. This presumes that rational behavior instead would lead to no return

predictability. Simon (1957) proposes the concept of bounded rationality for studying the

irrationality of human choices resulting from various institutional constraints such as the

psychological costs of acquiring information, cognitive limitations of human minds, or the

finite amount of time humans have to make a decision. Hong and Stein (1999), Barberis

and Shleifer (2003), and Greenwood and Shleifer (2014) assume that traders follow sim-

ple trading rules and do not extract information from prices. When return anomalies are

motivated by behavioral biases, Fama (1998) suggests that a Pandora’s box is opened,

undermining modeling parsimony by enabling one plethora of behavioral biases to explain

another plethora of anomalies.

To motivate trade, we relax the common prior assumption in a minimal way. Traders

are willing to trade because they believe their private signals are more precise than their

competitors believe them to be. Except for this relative overconfidence, traders are other-

wise completely rational. They apply Bayes Law consistently and optimize correctly. No

additional behavioral assumptions or modeling ingredients, like noise trading, are needed to

generate trade. Our paper follows Morris (1995), who eloquently argues for “dropping the

common prior assumption from otherwise rational behavior” models as an important and

largely overlooked modeling approach, since even rational agents may have heterogeneous

beliefs.

Empirical Literature. Our model provides a formal economic underpinning for the

extensive empirical literature studying the predictability of returns at different horizons
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using past price, book value, and measures of cash flow (dividends). The expected returns

are linear functions of state variables including the current levels of prices, dividends,

and long-term dividend growth rates as well as exponentially weighted averages of these

variables in the past. The decay rates of past prices and dividends are proportional to

the informativeness of prices, measured by the total precision of information. Our model

thus places specific testable non-linear micro-founded economic restrictions on VAR models

of expected returns such as Goyal and Welch (2003), Ang and Bekaert (2007), Cochrane

(2008), Van Binsbergen and Koijen (2010), and Rytchkov (2012). These restrictions are

sufficiently flexible to be consistent with the rich patterns of short-term momentum and

long-term mean-reversion. Our analysis provides some guidance for empirical research on

return predictability in markets with heterogenous beliefs, such as Greenwood and Shleifer

(2014) and Buraschi, Piatti and Whelan (2016).

In a simple calibration exercise, we show that realistic model parameters can be chosen

to match closely the observed levels of positive returns autocorrelation over short periods

of one to two years and negative autocorrelation over longer periods.

Our theoretical predictions are consistent with some empirical findings on properties of

momentum patterns. For example, we show empirically that momentum patterns tend to

be more pronounced for stocks with more trading. Also, Lee and Swaminathan (2000)

and Cremers and Pareek (2014) document that momentum is stronger for stocks with

higher trading volume and short-term trading. Moskowitz, Ooi and Pedersen (2012) find

that more liquid futures contracts tend to exhibit more momentum. Zhang (2006) and

Verardo (2009) show that momentum returns are larger for stocks with higher analysts’

disagreement. Similar properties characterize momentum patterns in our model, because

price dampening tends to be more substantial when there is more disagreement.

This paper is structured as follows. Section 1 presents a competitive model with discrete

trading. Section 2 analyzes holding-period returns as functions of both an empirically

correct specification of fundamentals and information and possibly empirically incorrect

beliefs of traders. Section 3 calibrates the model parameters and conducts some empirical

analysis. Section 4 concludes. All proofs are in the Appendix.

1. The Model

We first describe a competitive model in which information arrives continuously but

trading takes place at discrete intervals. The price aggregates traders’ heterogeneous beliefs
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about how information should be correctly processed. Given their individual beliefs, traders

behave in a rational manner. They collect public and private information, construct signals

from the information, apply Bayes Law correctly to predict returns, and calculate optimal

holdings. Trader are collectively irrational in that each trader is relatively overconfident,

believing that the precision of his own private information flow is greater than other traders

believe it to be.

1.1. Model Assumptions

Both fundamentals and information evolve continuously over the time interval t ∈ (−∞,∞).

Trading takes place at discrete dates t = kh, where k indexes time periods k = . . . ,−2,−1, 0,

1, 2, . . ., and h > 0 is the time interval between each round of trading. Varying h makes

it possible to examine how the frequency of trading affects the equilibrium when the con-

tinuous flow of information does not change. At t = kh, N risk-averse perfect competitors

trade a risky asset against a risk-free asset at price Pk. The risky security is in zero net

supply, and the risk-free asset earns constant risk-free rate r > 0.

The risky asset pays dividends at continuous rate D(t). Dividends follow a stochastic

process with stochastic long-term growth rate GL(t) and short-term growth rate G∗
S(t),

constant instantaneous volatility σD > 0, and constant rate of mean reversion αD > 0:

(1) dD(t) := −αD D(t) dt+GL(t) dt+G∗
S(t) dt+ σD dBD(t).

The long-term growth rate GL(t) follows an AR-1 process with mean-reversion αL and

volatility σL:

(2) dGL(t) := −αL GL(t) dt+ σL dBL(t).

The short-term growth rate G∗
S(t) follows an AR-1 process with mean-reversion αS and

volatility σS:

(3) dG∗
S(t) := −αS G∗

S(t) dt+ σS dBS(t).

The dividend D(t) and the long-term growth rate GL(t) are publicly observable. The

short-term growth rate G∗
S(t), marked with a star superscript, is not observed by traders. If

the dividend D(t), the long-term growth rate GL(t), and the short-term growth rate G∗
S(t)



8

were observable, then the price of the asset would equal its fundamental value given by the

generalization of the Gordon growth formula

(4) F (t) =
D(t)

r + αD
+

GL(t)

(r + αD)(r + αL)
+

G∗
S(t)

(r + αD)(r + αS)
.

For empirical interpretation, the variable D(t) corresponds to dividends or “cash flow,”

and D(t)/(r + αD) corresponds to “book value.” Since the model is arithmetic and not

geometric, the difference between price and the book value is analogous to a market-to-

book ratio. If price is greater than the book value, the firm is a growth stock; otherwise,

the firm is a value stock.

Each trader observes public and private signals about the short-term growth rate G∗
S(t),

then constructs an estimate of the fundamental value F (t) by replacing G∗
S(t) in equation

(4) with its expectation. As shown below, the equilibrium price looks like equation (4) with

G∗
S(t) replaced by a weighted sum of traders’ estimates of G∗

S(t) with weights summing to

less than one.

Each trader n observes a continuous stream of private information In(t) about the scaled,

unobservable, short-term growth rate G∗
S(t):

(5) dIn(t) := τ 1/2n

G∗
S(t)

σS Ω1/2
dt+ dBn(t).

The parameter Ω is a scaling constant discussed below (equation (8)); the parameter τn

measures the informativeness of dIn(t). Each increment dIn(t) in equation (5) is a noisy

observation of the unobserved growth rate G∗
S(t) since its drift is proportional to G∗

S(t).

No noise trading implies that traders infer the average estimate from the price.

Each trader is certain that his own private information In(t) has high precision τn = τH ,

and the other traders’ private information has low precision τm = τL for m ̸= n, with

τH > τL ≥ 0. Since this disagreement is common knowledge, relatively overconfident

traders agree to disagree about the precision of their signals.1

1Consider rescaling the private information (5) as a scaled growth rate plus noise, dIn(t) =

G∗
S(t)/(σS Ω1/2) dt + τ

−1/2
n dBn(t), n = 0, 1, . . . , N, so that trader n observes τ

−1/2
n dIn(t) rather than

dIn(t). This changes the equilibrium because traders disagree about whether to use factors τ
1/2
H or τ

1/2
L

to convert one scaling into the other. We solved the equilibrium and found that the dampening effect and
returns predictability, discussed below, disappear under this different scaling. Since a trader can estimate
the diffusion variance with high accuracy by observing dIn(t) over short time intervals in continuous time,
equation (5) has the appealing scaling that traders infer the correct diffusion variance while rescaling has
the unappealing feature that the observed diffusion variance will contradict some traders’ beliefs about it.
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Each trader also makes inferences about the growth rate G∗
S(t) from the publicly observ-

able dividend stream D(t). To streamline notation for the information content of dividends,

define dI0(t) :=
(
αD D(t) dt+ dD(t)−GL(t)dt

)
/σD with dB0 := dBD and

(6) τ0 := Ω σ2
S/σ

2
D.

Then, the stochastic process

(7) dI0(t) := τ
1/2
0

G∗
S(t)

σS Ω1/2
dt+ dB0(t)

is informationally equivalent to the dividend process D(t) in equation (1). Assume it is

common knowledge that the Brownian motions dB0, dBL, dBS, dB1,. . . , dBN are indepen-

dently distributed.

Let Enk{. . .} denote the expectation of trader n calculated with respect to his beliefs

about parameter values using information at time t = kh. This information consists of the

history of public and private signals dI0(j) and dIn(j), j ∈ [−∞, t] and prices Pj, j ≤ k,

as discussed below. Let GnS(t) := Ent {G∗
S(t)} and GnS,k := Enk{G∗

S(kh)} denote trader n’s

estimate of the short-term growth rate at time t and time t = kh.

In equations (5) and (7), the parameter σS Ω1/2 is a scaling coefficient. Let Ω denote

the steady state error variance of the estimate of G∗
S(t), scaled in units of the standard

deviation of its innovation σS:

(8) Ω := Var

{
G∗
S(t)−GnS(t)

σS

}
.

For example, if time is measured in years, then Ω = 4 has the interpretation that the

estimate of G∗
S(t) is “behind” the actual value of G∗

S(t) by an amount equivalent to four

years of volatility unfolding at rate σS per year. Since Ω is constant in a steady state, it

has no time argument.

The parameter τn is scaled in equations (5) and (7) so that τndt is the R
2 of the predictive

regression of the error G∗
S(t) − GnS(t) on dIn(t). It does not depend on the levels of the

error variance Ω. The precision τndt also measures the informativeness of the signal dIn(t)

as a signal-to-noise ratio, describing how fast the information flow generates a signal of a

given level of statistical significance.

Traders agree on the precision τ0 of public information in equation (7). Since each trader
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believes his own signal has high precision τH and others’ signals have low precision τL,

symmetry implies that traders agree on the total precision

(9) τ := τ0 + τH + (N − 1) τL.

Each trader chooses an optimal consumption path cn(t) and optimal portfolio holdings at

time t = kh, denoted Sn,k, to maximize an additively separable exponential utility function

with risk aversion A and time preference ρ:

(10) Enk

{∫ ∞

t=kh

e−ρ(t−kh) U(cn(t)) dt

}
.

Both cn(t) and Sn,k are calculated using information available at t = kh. The optimization

problem is complicated by the fact that consumption is chosen continuously while portfolio

holdings change only at trading period t = kh. For analytical tractability, we simplify

the problem slightly by assuming that when trading occurs, traders choose both portfolio

holdings and a consumption budget which does not change between rounds of trading.

This makes the assumption that traders do not use new public information and their own

new private information unfolding between trading rounds to adjust consumption between

trading rounds. They cannot use other traders’ private information between trading rounds

because there are no updated prices from which to infer the average of other traders’

private signals. As we shall see, traders have full information when they make decisions on

quantities to trade.

The symmetric model structure is described by the following parameters: h, ρ, A, r, N ,

αD, σD, αL, σL, αS, σS, τH , and τL. The model structure is common knowledge. Traders

agree about all parameter values, except for symmetric disagreement about the precisions

τH and τL of their own and other traders’ signals. Symmetry implies that all traders agree

about the variance Ω, precision of public information τ0, and total precision τ .

Trade is generated by agreement to disagree about signal precision. Traders believe that

they can make profits at the expense of others, even though it is common knowledge that

aggregate profits are equal to zero.
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Define D̆k+1 as the future value of dividends between rounds of trading:

(11) D̆k+1 = erh
∫ (k+1)h

kh

e−r(t−kh)D(t)dt.

The optimization problem nests in a simple way and becomes the discrete-time problem

(12) max
{cn,j},j=k,k+1,...,∞
{Sn,j},j=k,k+1,...,∞

Enk

∞∑
j=k

e−ρ(j−k)h Un,j(cn,j),

subject to the budget constraint

(13) Wn,j+1 = erh (Wn,j − hcn,j − Sn,jPj) + Sn,jD̆j+1 + Sn,jPj+1,

where Un,j(cnj) solves the continuous-time nested consumption subproblem

(14) Un,j(cn,j) := max
cn(jh+u),u∈[0,h]

Enj

{
−
∫ h

0

e−ρu e−Acn(jh+u) du

}
,

subject to

(15) hcn,j =

∫ h

0

e−ru cn(jh+ u)du.

This optimization problem (12)–(15) is solved in Appendix A.2.

1.2. Model Solution

Stratonovich-Kalman-Bucy filtering implies that trader n’s estimate GnS,k of the short-

term growth rate at period k can be conveniently written as the weighted sum of three

sufficient statistics or signals H0,k, Hn,k, and H−n,k, which summarize the information con-

tent of dividends, the trader’s private information, and other traders’ private information,

respectively. Define

(16) Hn,k :=

∫ kh

t=−∞
e−(αS+τ) (kh−t) dIn(t), n = 0, 1, . . . , N,
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and

(17) H−n,k :=
1

N − 1

∑
m=1,..,N
m̸=n

Hm,k.

These formulas have an intuitive interpretation. The signal Hn,k is a sufficient statistic

for trader n’s own information. The average signal H−n,k is a sufficient statistic for other

traders’ information. The importance of each bit of information dIn about the short-term

growth rate decays exponentially at a rate αS + τ , the sum of the natural decay rate αS of

the grow rate and the speed τ at which the others learn about it, defined in equation (9).

The filtering formulas imply that the steady-state error variance is given by

(18) Ω =
1

2 αS + τ
,

and trader n’s expected growth rate at t = kh is

(19) GnS,k := σS Ω
1/2
(
τ
1/2
0 H0,k + τ

1/2
H Hn,k + (N − 1) τ

1/2
L H−n,k

)
.

When forming his estimate, each trader assigns a larger weight τ
1/2
H to his own signal Hn,k

and a smaller weight τ
1/2
L to each of the other traders’ signals H−n,k. Trade occurs as a

result of the different weights used by traders in construction of their estimates.

Each trader calculates a target inventory proportional to his risk tolerance and the differ-

ence between his own valuation and the average valuation of other traders. The following

theorem characterizes equilibrium for the continuous-time model with perfect competition.

THEOREM 1: There exists a steady-state competitive equilibrium with symmetric lin-

ear strategies and with positive trading volume if and only if the three polynomial equa-

tions (A-45)–(A-47) have a solution, and traders’ demand curves are downward sloping.

Such an equilibrium has the following properties:

1) There is an endogenously determined constant CL > 0, defined in equation (A-42),

such that trader n’s optimal inventories Sn,k at period k are

(20) Sn,k = CL (Hn,k −H−n,k).

2) There is an endogenously determined constant CG > 0, defined in equation (A-40),
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such that the equilibrium price at period k is

(21) Pk =
Dk

r + αD
+

GL,k

(r + αD)(r + αL)
+ CG

ḠS,k

(r + αD)(r + αS)
,

where GL,k denotes the observable long-term growth rate and ḠS,k := 1
N

∑N
n=1GnS,k

denotes the average of traders’ expected short-term growth rates at time kh.

Theorem 1 implies that competitive traders immediately adjust inventories to levels equal

to the target inventory CL
(
Hn,k−H−n,k

)
. The pricing formula (21) is similar to the average

of traders’ valuations (4) with one important exception. Averaging traders’ expectations

implies CG = 1, but we will show below that CG < 1 holds instead. The coefficient CG < 1

makes the price different from the average valuations of all traders.

1.3. Price Dampening

In this section, we explain two mechanisms by which disagreement leads to price damp-

ening: “static beliefs aggregation” and “dynamic beliefs aggregation.”

Define the constant CJ as the ratio of the average of the square roots to the square root

of the average of precisions:

(22) CJ :=
(

1
N
τ
1/2
H + N−1

N
τ
1/2
L

) (
1
N
τH + N−1

N
τL
)−1/2

.

Now use equations (19) and (21) to write the price as

(23)

Pk =
Dk

r + αD
+

GL,k

(r + αD)(r + αL)
+

CG σS Ω
1/2

(r + αD)(r + αS)

(
τ
1/2
0 H0,k + CJ

(
1
N
τH + N−1

N
τL
)1/2 N∑

n=1

Hn,k

)
.

The constants CG and CJ describe two related mechanisms for how different beliefs about

the precisions of signals affect price.

In the benchmark case with τH = τL, equation (23) holds with CG = CJ = 1, and the

price describes a no-trade equilibrium in which all traders have the same beliefs and infer

the same information from prices.

Thus, if all traders have average beliefs and assign the average precision 1
N
τH + N−1

N
τL

symmetrically to all private signals, we obtain CG = CJ = 1. When traders become

relatively overconfident (τH > τL), holding the value of total precision τH + (N − 1)τL
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constant, then the value of Ω does not change, the equilibrium price is obtained from

equation (23) with CG and CJ having values less than one, as we discuss below.

The endogenous parameter CJ reflects static beliefs aggregation. It describes how traders

form expectations about the short-term growth rate on average. Since the price is fully

revealing, traders have the same information, but their expectations are different because

they have different beliefs. When traders are relatively overconfident (τH > τL), Jensen’s

inequality implies CJ < 1 because the price reflects a weighted average of the square roots

of precisions and the square root function is concave.2 As disagreement increases, Jensen’s

inequality also implies that CJ decreases. Thus, holding total precision τH + (N − 1)τL

constant, more disagreement about signal precision, measured by τH/τL, leads to more

dampening of the price, as averaging traders’ valuations dampens the weight the market

assigns to the average signal about short-term growth rate relative to the benchmark case

without disagreement and with the same total precision. This static dampening effect of

CJ < 1 shows up even in an analogous one-period model, as we discuss in online Appendix

B.1.

The endogenous parameter CG reflects dynamic beliefs aggregation. It describes how the

equilibrium price weights traders’ valuations of fundamentals. If CG = 1, the price is a

weighted average of traders’ expectations with weights summing to exactly one. If CG < 1,

then price is a dampened weighted average because the weights sum to less than one. With

trading at discrete intervals, extensive numerical investigation shows that CG < 1 always

holds when τH > τL.

Intuitively, the dynamic dampening effect CG < 1 is the result of how short-term specu-

lative trading affects dynamic beliefs aggregation based on endogenous disagreement about

the dynamics of the short-term growth rate. Each trader disagrees with others about how

to interpret private information. He expects others to correct their erroneous valuations

in the short run, yet ultimately converge towards his own valuation in the long run. Each

trader attempts to profit by trading ahead of others’ anticipated valuation revisions, even

if this means trading against his own long-term valuation in the short run.

Consistent with the intuition that CG < 1 is associated with speculative trading on short-

term opportunities, we confirm that CG → 1 holds as trading opportunities occur at less

frequent intervals. Figure 1 illustrates how CG, CJ , and CL (in equation (20)) depend on

2Jensen’s inequality also implies that CJ < 1 as long as τH ̸= τL. However, if τH < τL, then we obtain
CL < 0 and price impact (measured by the coefficient of inventories Sn(t) in the price function (45) in
Section 3.3) is negative. The demand curve slopes the wrong way. This case is thus less appealing.
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Figure 1. CG, CJ , and CL against time interval ln(h).

the time interval between each trade h.3 When the time interval h is large enough, CL

becomes small and CG → 1 holds; traders buy and hold small quantities. The dampening

effect goes away because traders are not able to engage in short-term speculative trading

based on disagreement about the short-term growth rate and thus CG → 1 holds. When

the time interval h is close to zero, traders can trade aggressively against one another’s

perceived mistakes, the dampening effect converges to that of the continuous-time model.

The constant CJ does not depend on the time interval between each trade h in both equation

(22) and Figure 1. Figure 1 shows that both CG and CL become flat when ln(h) < −2. This

implies that the results of the discrete-time model converge to those of the continuous-time

model approximately when h < 0.135 years, about seven weeks in this example.

Further intuition for the dynamic dampening effect is provided by Figure 2, which

graphs buy-and-hold valuations PVn(0, t), PV−n(0, t), and PVp(0, t) with time t on the

horizontal axis and the results of different present value calculations on the vertical axis

(for h = 0.1, 1, 10, and 40).4 Details of present-value calculations are given in equa-

tions (A-55), (A-57), and (A-59) in Appendix A.3. By assumption, these calculations are

made using trader n’s beliefs, but they are identical for all traders. For simplicity of ex-

position, we assume that the buy-and-hold valuations of all N traders coincide at time 0.

Though the equilibrium price at time 0 is not equal to the average of these valuations due

to the dynamic dampening effect of CG < 1.

The horizontal solid line PVn(0, t) is based on the assumption that trader n liquidates

the asset at date t at a valuation equal to his own estimate of its fundamental value.

3Parameter values are r = 0.01, A = 1, αD = 0.1, αS = 0.02, σD = 0.5, σS = 0.1, αL = 0.02, σL = 0.1,
τ0 = Ωσ2

S/σ
2
D = 0.0054, τ = 7.4, τH = 1, and N = 100.

4Parameter values are r = 0.01, A = 1, αD = 0.1, αS = 0.02, σD = 0.5, σS = 0.1, αL = 0.02, σL = 0.1,
τ0 = Ωσ2

S/σ
2
D = 0.0054, τ = 7.4, τH = 1, and N = 100, GnS(0) = G−nS(0) = 0.08, GL(0) = 0, D(0) = 0.7.
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Figure 2. Present Value of Dividends and Liquidation Value from the Perspective of a

Trader.

Since trader n applies Bayes law correctly given his beliefs, the martingale property of

his valuation (law of iterated expectations) makes the present value PVn(0, t) a constant

function for t ≥ 0.

The curve PV−n(0, t) just below the line of PVn(0, t) depicts the present value of the

asset based on the assumption that trader n liquidates the asset at a valuation equal to

the average estimate of fundamental value of the other N −1 traders. Due to disagreement

about signal precision, trader n believes that the other N − 1 traders’ estimates of the

short-term growth rate G∗
S(t) will mean revert to zero at rate αS +

(
τ
1/2
H − τ

1/2
L

)2
, which is

faster than the mean reversion rate αS he assumes for his own forecast. Therefore, trader n

believes that PV−n(0, t) will fall in the short run. Since he also believes that his own present

value calculation is correct, he expects that PV−n(0, t) will rise back to his own estimate

of the fundamental value in the long run, as illustrated in Figure 2.

The other four solid curves in Figure 2 are based on the assumption that trader n liq-

uidates the asset at the equilibrium market price P (t) for various time interval between

trading h = 0.1, 1, 10, 40. Let PVp(0, t) label the graphs of these calculations in Figure 2.

Consistent with the equilibrium result 0 < CG < 1, the initial price P (0) := PVp(0, 0) is

lower than the consensus fundamental value, even if all traders by assumption agree about

this current fundamental value. If prices were equal to the consensus fundamental valua-

tion, all traders would want to hold short positions because all of them would expect prices

to fall below fundamental value in the short run as the others learn about their mistakes

and become temporarily bearish. As a result, the price P (0) is dampened relative to the
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average fundamental valuation in the market. We refer to this mechanism as a Keynesian

beauty contest since, in addition to disagreeing about the value of the asset at the present,

traders agree to disagree about dynamics of their future valuations in the future and trade

on this future disagreement at the present.

As we can see from Figure 2, the price is dampened more substantially if traders can

trade more frequently (h is smaller). The dampening effect can push prices to much lower

levels than trader’s own valuation and other traders’ valuations. If traders can only buy and

hold (h → ∞), then CG = 1 holds and PVp(0, t) equals the weighted average valuation of

PVn(0, t) and PV−n(0, t) with weights 1/N and (N −1)/N respectively. If traders were not

able to implement short-term strategies effectively due to long intervals between trading

rounds, the profit opportunities could not be exploited and the dampening effect would go

away. A formal analysis of expectations dynamics is provided in Appendix A.3.

The values of constants CG and CJ also depend on the level of disagreement. Figure 3

illustrates that both CJ and CG decrease when the degree of disagreement τH/τL increases

while holding constant total precision (h = 0.1, 1, 10, 40).5 Disagreement amplifies the

dampening effect of CJ < 1 since it magnifies the effect of Jensen’s inequality. Disagreement

also leads to more pronounced price dampening (CG < 1) due to the Keynesian beauty

contest since traders have greater incentives to engage in short-term speculation.
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Figure 3. CJ and CG against τH/τL while fixing τ .

Since traders can trade frequently in active financial markets, we provide results for

continuous trading (h→ 0). In this limiting case, we prove CG < 1 analytically.

PROPOSITION 1 (Price Dampening with Continuous Trading): Assume h → 0. Rela-

5Parameter values are r = 0.01, A = 1, αD = 0.1, αS = 0.02, σD = 0.5, σS = 0.1, αL = 0.02, σL = 0.1,
τ0 = Ωσ2

S/σ
2
D = 0.0054, τ = 7.4, and N = 100.
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tive overconfidence, τH > τL, implies price dampening:

(24) 0 < CG ≤

1 +
N − 1

N

(
τ
1/2
H − τ

1/2
L

)2
r + αS


−1

< 1, and 0 < CJ < 1.

A common prior, τH = τL, implies no price dampening: CG = 1 and CJ = 1.

As disagreement τH/τL decreases, both constants converge to one and price dampening

goes away. The proof is in Appendix A.4.

The following proposition describes a limiting case with a closed-form solution.

PROPOSITION 2 (Closed-Form Solution with τL = 0): Assume h → 0, τL = 0, τ0 → 0,

and N → ∞. Then the three equations characterizing equilibrium, (A-45)–(A-47), have

a closed-form solution presented in equations (A-66)–(A-68), implying limN→∞CG =

(r + αS)/(r + αS + τ) < 1, and limN→∞CJ = 0.

The proof is in Appendix A.5. In the limiting case with N → ∞, we assume that τL = 0

so that the total precision τ is fixed.6 Proposition 2 implies that as the number of traders

increases, CJ converges to zero and CG converges to a constant limit which is less than one.

Each trader believes that the other traders observe signals with no information and trade

aggressively against one another’s perceived mistakes. Price dampening is substantial.

Appendix A.6 proves that the risk tolerance parameter 1/A scales trading volume but

has not effect on prices (including CJ and CG).

2. Return Dynamics and Return Predictability

Next, we present the endogenously derived structural model for return dynamics and

discuss its time-series properties in the context of our model.

It is difficult to design empirical tests if traders have heterogeneous beliefs because it is

necessary to make a distinction between parameter values defined by traders’ beliefs and

parameter values that describe the empirically correct model. Since each trader believes

his own private signal is more precise than other traders believe it to be, all traders’

expectations cannot be correct simultaneously. Moreover, in a symmetric model with all

6If τL ̸= 0, then total precision τ → ∞ when N → ∞. Both CG and CJ would converge to one and
there would be no dampening effect since each trader believes that the total precision of other N−1 private
signal goes to infinity.
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signals having the same empirically correct precision, none of the individual traders’ beliefs

could be correct.

For simplicity, we assume that a correct specification of the model has the same structure

as traders believe but is described by different parameter values. We furthermore assume

that the empirically correct precisions of all signals are the same.

Empirical model outcomes—such as conditional expected returns on the risky asset—

depend on both the possibly incorrect parameters used by the traders and the empirically

correct parameters. This makes expected returns complicated functions of the entire history

of dividends and prices. Since the model converges to the continuous-time model as h→ 0,

we describe our results for the continuous-time setting, which is more analytically tractable.

2.1. Inference under Empirically Correct Beliefs

We start by introducing empirically correct beliefs about model parameters. Let “hats”

distinguish the empirically correct parameter values from the possibly incorrect beliefs of

the traders.

Let precision τ̂0 denote the empirically correct precision of public information. Let τ̂I

denote the symmetric empirically correct precision of each private signal; for simplicity,

all signals are assumed to have the same precision. As discussed below—using knowledge

of both correct parameters and parameters used by traders—with continuous trading, the

average signal across traders can be recovered from the histories of dividends and prices.

The correct total precision is τ̂ = τ̂0 +N τ̂I . From the perspective of each trader, the total

precision is τ = τ0 + τH + (N − 1) τL. In general, these precisions are different (τ̂ ̸= τ).

Except for beliefs about the parameters α̂L, α̂S, σ̂S, and τ̂I , we assume that the empir-

ically correct parameter values are the same as the parameter values used by traders. In

particular, we assume that traders use correct parameters αD, σD, and σL. Note that the

value of σD can be estimated with perfect accuracy from observing quadratic variation in

the dividend process D(t) continuously, and the value of σL can be estimated with perfect

accuracy from observing quadratic variation in GL(t) continuously. By placing “hats” over

the variables, we obtain definitions of Ω̂, τ̂0, τ̂ , and Ĥn(t) for n = 0, 1, . . . , N . In continuous

time t, let Êt{. . .} denote the empirically correct expectation operator given all informa-

tion at time t. The empirically correct unobserved short-term growth rate G∗
S(t) follows
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the process

(25) dG∗
S(t) := −α̂S G∗

S(t) dt+ σ̂S dBS(t).

The market price aggregates the information content of the divided D(t) and N signals

I1(t), . . . , IN(t). The empirically correct long-term growth rate GL(t) follows the process

(26) dGL(t) := −α̂L GL(t) dt+ σL dBL(t).

Each signal In(t) produces a continuous stream of information given by

(27) dIn(t) := τ̂
1/2
I

G∗
S(t)

σ̂S Ω̂1/2
dt+ dB̂n(t), n = 1, . . . , N,

where

(28) dB̂n(t) = dBn(t) +

(
τn

σSΩ1/2
− τ̂n

σ̂SΩ̂1/2

)
G∗
S(t)dt,

and dBS, dB̂1, . . . ,dB̂N are independent Brownian motions.

Define the dividend-information flow dI0(t) and its precision τ̂0 as

(29) dI0(t) := τ̂
1/2
0

G∗
S(t)

σ̂S Ω̂1/2
dt+ dB0(t), with τ̂0 :=

Ω̂ σ̂2
S

σ2
D

.

With a correct empirical specification, it is possible to solve a statistical inference prob-

lem similar to the one solved by traders and discussed in Section 1. The history of each

information flow In(t) can be summarized by a sufficient statistic Ĥn(t) defined as

(30) Ĥn(t) :=

∫ t

u=−∞
e−(α̂S+τ̂) (t−u) dIn(u), n = 0, 1, . . . , N.

Combining private signals and the public signal, define the aggregate sufficient statistic

Ĥ(t) as the linear combination of Ĥ0(t) and Ĥn(t), n = 1, . . . , N , given by

(31) Ĥ(t) = τ̂
1/2
0 Ĥ0(t) +

N∑
n=1

τ̂
1/2
I Ĥn(t).
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For comparison, we can define the continuous time statistics Hn(t) and H−n(t) analogously

to equations (16) and (17) and the market-implied aggregate sufficient statistic H(t) using

the market’s implied precision weight:

(32) H(t) := τ
1/2
0 H0(t) +

N∑
n=1

τ
1/2
I Hn(t), where τ

1/2
I :=

1

N
τ
1/2
H +

N − 1

N
τ
1/2
L .

Since the empirically correct model is symmetric, the statistic Ĥ(t) defined in (31) can be

extracted from the history of public information (dividends, long-term growth rate, and

market prices). Then the empirically correct estimate of the short-term growth rate ĜS(t)

can be written

(33) ĜS(t) := Ê{G∗
S(t)} = σ̂S Ω̂

1/2 Ĥ(t),

with steady-state error variance

(34) Ω̂ := V̂ar

{
G∗
S(t)− ĜS(t)

σ̂S

}
=

1

2 α̂S + τ̂
.

As can be seen from equations (16) and (30), both sufficient statistics Ĥn(t) and Hn(t) are

linear combinations of increments in information flow, with weights decaying exponentially

over time. The empirically correct decay rate may be different from the decay rate used

by the traders. Therefore, in general we have

(35) α̂S + τ̂ ̸= αS + τ.

It can be shown that the sufficient statistics Ĥn(t) and Hn(t), n = 0, 1, . . . , N , relate to

each other as follows,

(36) Ĥn(t) = Hn(t) + (αS + τ − α̂S − τ̂)

∫ t

u=−∞
e−(α̂S+τ̂) (t−u) Hn(u) du.

If traders use the empirically correct mean-reversion rate (αS = α̂S) and empirically cor-

rect total precision of the signals (τ = τ̂), then we obtain Ĥn(t) = Hn(t). If traders

have empirically incorrect beliefs about how quickly information decays, then the sufficient

statistics Ĥn(t) and Hn(t) are different, and the relationship between the two sufficient
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statistics depends on the entire history of information flow. For example, an empirically

correct specification may assign higher weights to the information from the distant past if

dividends are more persistent or signals are less precise than traders believe. In this case,

we have αS+τ > α̂S+ τ̂ , and equation (36) shows how to obtain Ĥn(t) for trader n’s signal

as a function of the infinite history of a trader n’s sufficient statistic Hn(t).

We will be mostly interested in the aggregate statistic Ĥ(t) defined in (31). The histories

ofH0(t) andH(t) can be recovered from the histories of dividends, prices, and the long-term

growth rate. Equation (36) implies that Ĥ(t) can also be recovered from these histories.

We will show next that the expected excess return has a specific closed form which depends

on current and past prices and dividends as well as long-term growth rates.

2.2. Autocorrelation of the Holding-Period Excess Return

We describe return dynamics under empirically correct beliefs that the precision of the

public signal is τ̂0 and the precision of each private signal is τ̂I . With continuous trading,

equation (32) and the continuous version of equation (23) yield the continuous price P (t)

at time t:

(37) P (t) =
D(t)

r + αD
+

GL(t)

(r + αD)(r + αL)
+ CG

σS Ω
1/2

(r + αD)(r + αS)
H(t).

The equilibrium return process has a linear structure7

(38) dP (t)+D(t)dt−rP (t)dt =
(
b Ĥ(t)−aH(t)

)
dt− α̂L − αL

(r + αD)(r + αL)
GL(t)dt+dB̂r(t),

where a, b, and dB̂r(t) are defined in equations (A-70), (A-71), and (A-72) in the Appendix.

Equation (38) implies that the expected excess return is a linear combination of the average

two dynamically changing statistics H(t) and Ĥ(t) as well as the observable long-term

growth rate GL(t).

We can also write the return dynamics (38) in a more intuitive and familiar form. Since

the price P (t) is a linear combination of D(t), GL(t), and H(t) from equation (37) and since

7Using equation (37), which expresses the market price P (t) as a function of the dividend D(t), the
long-term growth rate GL(t), and the market’s sufficient statistic H(t), we can write an equation for dP (t),
plug in dHn(t) using equation (16), and plug in the correct empirical specification of the dynamics of dIn(t)

from equation (27) and the correct estimate ĜS(t) from equation (33).
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Ĥ(t) can be recovered from the history of H(t) using equation (36), both H(t) and Ĥ(t)

can be recovered from the history of prices P (t), dividends D(t), and long-term dividend

growth rate GL(t). This allows us to show that the return process, conditional on all public

and private information, depends in a specific manner on the history of publicly observable

dividends D(t), prices P (t), and GL(t).

THEOREM 2: The equilibrium excess return dynamics can be expressed as a linear com-

bination of past publicly observable dividends D(t), prices P (t), and long-term growth rates

GL(t). More specifically, dP (t) +D(t) dt− r P (t) dt can be written as

α1

(
P (t)− D(t)

r + αD
− GL(t)

(r + αD)(r + αL)

)
dt− α̂L − αL

(r + αD)(r + αL)
GL(t)dt

+ α2

(∫ t

u=−∞

(
P (u)− D(u)

r + αD
− GL(u)

(r + αD)(r + αL)

)
e−(α̂S+τ̂)(t−u) du

)
dt

− α3

(∫ t

u=−∞
e−(α̂S+τ̂) (t−u) dI0(u)

)
dt+ dB̂r(t),

(39)

where the constants α1, α2, and α3 are defined in equations (A-78), (A-79), and (A-80)

in Appendix A.7 and dB̂r(t), defined in equation (A-72), is a martingale increment with

respect to information at time t.

The four terms in equation (39) capture different sources of return predictability. First,

investors obtain a conditional excess return proportional to the deviation of the current

price P (t) from the unconditional valuation D(t)/(r + αD) + GL(t)/((r + αD)(r + αL)).

Second, a conditional excess return also relates to the long-term growth rate GL(t). It

captures predictability related to traders using an incorrect mean reversion rate for long-

term growth. Third, investors obtain a conditional excess return proportional to the past

deviations of prices from the unconditional valuation and the past dividends surprises dI0;

the importance of each past component decays exponentially at rate α̂S + τ̂ .

The coefficients α1, α2, and α3 are positive or negative depending on how the beliefs

of traders about parameter values deviate from the empirically correct values of these

parameters. When the information decay rate αS+τ used by traders is empirically correct,

αS + τ = α̂S + τ̂ , we obtain α2 = 0 but α3 ̸= 0; except for dependence on past public

information (likely empirically small), the expected return depends only on the current

deviation of prices from unconditional values, not on past deviations.

Our model suggests that when αS + τ ̸= α̂S + τ̂ , it is the entire history of the dividend-
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to-price ratios and dividends—not only their current values—that should be included as

explanatory variables in return-forecasting regressions in order to capture all information

relevant for predicting the return. Thus, it may be warranted to consider more carefully

VAR models with multiple lags, like Campbell and Shiller (1988), rather than a VAR model

with one lag as is typical in more recent literature.

We next calculate the holding-period excess return. Let R(t, t + T ) denote the cumu-

lative un-discounted holding-period mark-to-market cash flow per share on a fully levered

investment in the risky asset from time t to time t+ T :

(40) R(t, t+ T ) =

∫ t+T

u=t

(
dP (u) +D(u) du− r P (u) du

)
.

From equation (38), we obtain

(41)

R(t, t+T ) =

∫ t+T

u=t

(
b Ĥ(u)− a H(u)

)
du−

∫ t+T

u=t

α̂L − αL
(r + αD)(r + αL)

GL(u)du+

∫ t+T

u=t

dB̂r(u).

Similar to equation (39), the holding-period excess return R(t, t + T ) can be expressed

as a linear combination of past publicly observable dividends D(t), prices P (t), and long-

term growth rate GL(t). The following theorem formally describes a structural model for

holding-period excess returns.

THEOREM 3: The holding-period excess return R(t, t+ T ) can be represented as

R(t, t+ T ) = β1(T )
(
P (t)− D(t)

r + αD
− GL(t)

(r + αD)(r + αL)

)
− (α̂L − αL)(1− e−α̂LT )

(r + αD)(r + αL)α̂L
GL(t)

+ β2(T )

∫ t

u=−∞

(
P (u)− D(u)

r + αD
− GL(u)

(r + αD)(r + αL)

)
e−(α̂S+τ̂)(t−u) du

− β3(T )

∫ t

u=−∞
e−(α̂S+τ̂) (t−u) dI0(u) + B̄(t, t+ T ),

(42)

where time-varying coefficients β1(T ), β2(T ), and β3(T ) are defined in equations (A-89),

(A-90), (A-91) in the Appendix and B̄(t, t+T ) is a martingale increment defined in equation

(A-86) in Appendix A.8.

Similar to Theorem 2, equation (42) implies that the holding-period excess returns depend

on the deviation of the current price P (t) from the unconditional valuation D(t)/(r+αD)+
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GL(t)/((r + αD)(r + αL)), the past deviations of prices from the unconditional valuation,

the past dividends surprises dI0, and a time-series value effect related to the long-term

growth rate GL(t), as will be discussed below.

In the special case where traders use the empirically correct total precision of information

flow and parameters describing the short-term growth rate (τ̂ = τ , α̂S = αS, and σ̂S = σS),

the correct precision of each signal is τ̂I = (τH+(N −1)τL)/N , and we obtain the following

proposition.

PROPOSITION 3: If τ̂ = τ , α̂S = αS, and σ̂S = σS, then β1(T ) > 0, β2(T ) = 0, β3(T ) >

0, and the expected holding-period excess return (42) can be written as

Êt{R(t, t+ T )} = β1(T )
(
P (t)− D(t)

r + αD
− GL(t)

(r + αD)(r + αL)

)
− (α̂L − αL)(1− e−α̂LT )

(r + αD)(r + αL)α̂L
GL(t)− β3(T )H0(t).

(43)

The coefficient β1(T ) is positive and monotonically increasing in the horizon T .

The three terms on the right side of equation (43) are related to time-series momen-

tum, time-series value, and overreaction to public information, respectively. Overall return

dynamics is ultimately related to the relative magnitudes of these effects.

The positive coefficient β1(T ) is related to time-series momentum. It is proportional to

the difference between the current price P (t) and the long-term unconditional valuation

based on D(t) and GL(t). This difference measures the dampened average of traders’

expectations of the short-term growth rate ḠS(t). Time series momentum is a consequence

of underreaction of prices to ḠS(t) resulting from both static and dynamic dampening

effects, even when traders are correct on average. More specifically, in Appendix A.9, we

show that the positive coefficient β1(T ) can be decomposed into two terms, where the first

term with 1−CG > 0 results from the dynamic dampening effect of the Keynesian beauty

contest and the second term with τ̂
1/2
I − τ

1/2
I > 0 results from the static dampening effect

of CJ < 1.8

The second term is related to a time-series value effect. It is proportional to the long-

term growth rate GL(t). If traders think that the long-term growth rate mean-reverts at

a slower rate than the empirically correct parameter (αL < α̂L), then the proportionality

8Since traders are correct on average, we have τ̂I = 1
N τH + N−1

N τL. The definition of τ
1/2
I in equation

(32) and CJ < 1 in equation (22) imply that τ̂
1/2
I − τ

1/2
I > 0.
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coefficient is negative. Stocks with high long-term growth rate GL(t) (growth stocks) tend

to have lower returns than stocks with low long-term growth rates (value stocks). This

time-series value effect implies mean-reversion in returns. The proportionality coefficient

increases with time horizon, making this effect more pronounced in the long run. The third

term is proportional to the public signal and the proportionality coefficient is negative.

It also implies mean-reversion in returns because traders put too much weight on public

signals relatively to the weight on private signals which is dampened due to the static

dampening effect of CJ < 1. Prices tend to overreact to public information and this is

corrected afterwards.

To formally examine return predictability, we derive the autocorrelations Corr{R(t −
Tl), R(t + Tf )} of the cumulative return for different lags Tl and leads Tf . The details are

presented in equations (A-106), (A-113), and (A-114) in Appendix A.10. In this section

for simplicity, we study correlations for equal leads and lags. We will use different lags and

leads for the model calibration in Section 3.

To develop the intuition that the holding-period return correlations depend on param-

eter values, we analyze and provide examples for four specific combinations of different

parameter values (cases A, B, C, and D). In all four cases, we assume that traders’ beliefs

are “correct on average” (relatively overconfident but not absolutely overconfident). The

traders also use correct parameters to describe the short-term growth rate. More specially,

we focus on cases with τ̂ = τ , α̂S = αS, and σ̂S = σS. For the more general cases in which

traders use empirically incorrect parameter values such as α̂S, σ̂S, and τ̂ , a wide range of

return patterns also arise in the equilibrium. We illustrate these patterns analytically and

provide several numerical examples in online Appendix B.2.

Case A. Panel (1) of Figure 4 plots the autocorrelations Corr{R(t− T, t), R(t, t + T )}
of the cumulative excess returns for different horizons T when traders use the empirically

correct mean-reversion rate of the long-term growth rate α̂L = αL.
9 Proposition 3 implies

a tendency for time-series momentum in returns since the coefficient β1(T ) is positive and

monotonically increases in horizon T .

Time-series momentum occurs due to price dampening. In Appendix A.10, we show

analytically that the autocorrelation is positive for the limiting case studied in section 1.3

with τL = 0, τ0 → 0, and N → ∞. Our extensive numerical analysis shows that the

9The parameters are r = 0.01, N = 100, A = 1, αD = 0.1, σD = 0.5, αS = 0.4, σS = 1, α̂L = αL =
0.008, σL = 0.06, τH = 2, τL = 0.02.



27

autocorrelation is positive for a large range of parameter values for Case A. The positive

autocorrelation implies that the conditional expected return Ê{R(t, t + T ) | R(t − T, t)}
is increasing in R(t− T, t), thus indicating time-series momentum in the sense that higher

returns in the past tend to be followed by higher returns in the future.
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(1) Case A (2) Case B

(3) Case C (4) Case D

Figure 4. The four panels illustrate different patterns of positive and negative correla-

tion, Corr{R(t− T, t), R(t, t+ T )}, obtained over different holding periods T , when traders’

beliefs are correct on average (τ = τ̂ , α̂S = αS, σ̂S = σS).

Case B. Panel (2) of Figure 4 illustrates the correlation of the cumulative returns for the

case when traders think that the long-term growth rate is more persistent than it actually

is (αL < α̂L).
10 Proposition 3 implies that if αL < α̂L, then the second term of equation

(43) leads to the time-series value effect and mean-reversion of returns. As illustrated in

panel (2) of figure 4, if we set the disagreement level to be low, then the price dampening

effect is small. Time-series value effect then dominates time-series momentum and makes

autocorrelation in returns negative.

Case C. Panel (3) of Figure 4 illustrates the case when traders think that the long-term

growth rate is more persistent than it actually is (αL < α̂L), but the disagreement level is

10The parameters are the same as panel (1) in Figure 4, except τH = 0.1 and α̂L = 0.05.
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higher and difference of α̂L − αL is larger than in Case B.11 The expected holding period

return exhibits short-run reversal followed by long-run momentum.

Case D. Panel (4) of Figure 4 illustrates a more realistic case when the expected holding-

period excess returns first exhibit time-series momentum due to the price dampening effect

and then mean reversion due to a time-series value effect, as explained after Proposition 3.

The only difference from Case A is that we assume that α̂L > αL.
12

As our examples show, the expected returns exhibit different patterns depending on the

parameter values. Figure 4 illustrates four possible patterns: (1) only momentum, (2) only

mean-reversion, (3) first mean-reversion and then momentum, (4) first momentum and

then mean-reversion.

In general, we find that the expected holding-period return patterns are highly sensitive

to the parameter values. The last case is by-and-large consistent with empirical findings

of short-run momentum and long-run mean-reversion. We will next calibrate our model

parameters.

3. Model Calibration and Empirical Analysis

In this section, we first calibrate the parameter values of our structural model to generate

quantitatively realistic patterns of returns correlation. We then test the new prediction of

our model that time-series momentum tends to be stronger for stocks with greater trading

volume.

3.1. Model Calibration

To calibrate the model parameters, we first conduct empirical analysis similar to Lee

and Swaminathan (2000) (Column 1 of Table VIII). The sample consists of common stocks

listed on the NYSE and AMEX during the period January 1965 through December 2006

with at least two years of data prior to the analysis.13 We eliminate companies incorporated

outside the United States, Americus Trust Components (Primes and Scores), closed-end

funds, and real estate investment trusts.

Column (A) of Table 1 reports the time-series average of slope coefficients estimated from

11The parameters are the same as panel (1) in Figure 4, except αL = 0.05, αS = 0.12, σS = 0.12, and
α̂L = 0.2.

12The parameters are the same as panel (1) in Figure 4, except α̂L = 0.05.
13We conduct our analysis using the sample period of 1965–2006 to exclude the financial crisis period.
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monthly Fama–MacBeth cross-sectional regressions of the following model:

Model (A) : Returnt+Tf−1,t+Tf ,i = aTf ,1 + bTf ,1Returnt−1,t,i + et+Tf−1,t+Tf ,i,

where subscript i refers to stock i, Returnt+Tf−1,t+Tf ,i is the annual return Tf years ahead,

and Returnt−1,t,i is the annual return of the previous year, where a lead Tf = 1, 2, 3, 4,

or 5 years. The cross-sectional regression is run monthly using all stocks available. The

standard errors of the time-series means are computed using the Hansen and Hodrick (1980)

correction.

Column (A) of Table 1 reports that the slope coefficient is positive and significant for

Tf = 1, negative and insignificant for Tf = 2, 3, 4, and negative and significant for Tf = 5.

This confirms the presence of time-series momentum in Year 1 and significant reversal in

Year 5. Our results are similar to the results in Lee and Swaminathan (2000).

Time-Series Average Slope Coefficients, bTf ,1

Tf Model (A) Model (B)

1
0.0463
(2.9338)

0.0463
(2.9338)

2
-0.0302
(-1.6528)

0.0109
(0.3326)

3
-0.0190
(-1.0088)

-0.0110
(-0.2509)

4
-0.0265
(-1.5759)

-0.0549
(-1.1776)

5
-0.0366
(-2.1726)

-0.1076
(-1.5957)

Table 1—Regression Tests of Return Momentum and Reversal.

This table reports time-series average of slope coefficients estimated from monthly Fama–
MacBeth cross-sectional regressions of models (A) and (B) run from January 1965 to
December 2001. The coefficients are the time-series (444 months) means with t-statistics
in parentheses.

Column (B) of Table 1 reports the time-series averages of slope coefficients from monthly
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Fama–MacBeth cross-sectional regressions:

Model (B) : Returnt,t+Tf ,i = aTf ,1 + bTf ,1Returnt−1,t,i + et,t+Tf ,i,

where Returnt,t+Tf ,i is the cumulative return from time t to time t+Tf , and Returnt−1,t,i is

the annual return of the previous year, where Tf = 1, 2, 3, 4, 5 years. The patterns suggest

similar returns dynamics.

To calibrate model parameters, we match theoretical regression coefficients of regressing

the cumulative return R(t, t+Tf ) on R(t−Tl, t), as in equation (A-115) in Appendix A.10,

to the corresponding empirical values in column (B) of Table 1 for different Tf and Tl = 1.

We assume that traders are correct on average; they agree about the total precision of

the short-term growth rate as well as the mean-reversion rate and instantaneous volatility

of the short-term growth rate (τ̂ = τ , αS = α̂S, σS = σ̂S). There remain twelve parameters:

r, A, N , αD, σD, αS, σS, αL, σL, α̂L, τH , and τL. The magnitude and horizon of return

momentum are determined by the level of disagreement τH/τL, the decay rate of signals

about the short-term growth rate αS + τ , and the size of σS. The magnitude and horizon

of long run return reversal are determined by the difference between traders’ beliefs and

empirically correct beliefs about the mean-reversion rate of the long-term growth rate

αL − α̂L and the size of σL.

To reduce the number of parameters to be estimated, we assume r = 0.01, A = 1,

N = 100, αD = 0.005, σD = 0.5, τH = 10, and τL = 0.1. We then estimate five parameters

αS, σS, αL, σL, and α̂L to match the regression coefficients to their empirical estimates.14

To examine whether overconfidence can generate time-series momentum similar to what

is observed empirically, the assumptions N = 100, τH = 10, and τL = 0.1 imply that

each trader is extremely overconfident. The combined precision of 19.9 means that traders’

inventories have a half-life of one or two weeks.15 This implies that traders in the model

engage in very short-term trading using their own signals to trade against others’ signals

in a Keynesian beauty contest. The estimated parameter values are reported in the last

five rows of Table 2.

Figure 5 shows that our calibrated model closely matches the empirical estimates. The

solid curve plots the theoretical regression coefficients bTf ,1 for the calibrated parameter

14We run regression model (B) for Tf = 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5 to obtain more observations
for calibrating the parameter values of the model.

15Equation (20) in Theorem 1, equations (A-5) and (A-6) imply that traders’ optimal inventories mean-
revert at rate of αS + τ.
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Parameter Description Value
r Risk-free rate 0.01
A Risk aversion 1.00
αD Mean-reversion rate of dividend 0.04
σD Instantaneous volatility of dividend 0.50
N Numbers of traders 100.00
τH Precision of trader n’s signal 10.00
τL Precision of others’ signal 0.10
αS Mean-reversion rate of GS 1.3130
σS Instantaneous volatility of GS 10.9792
αL Traders’ mean-reversion rate of GL 0.0014
α̂L Empirically correct mean-reversion rate of GL 0.2043
σL Instantaneous volatility of GL 0.1169

Table 2—Parameter Calibration.

The top half of the table reports the given parameter values for r , A , N , αD, σD, τH , and
τL. The bottom half reports the estimated parameters αS, σS, αL, σL, and α̂L.

values from Table 2. The dots correspond to the empirical slope estimates from regression

model (B) in Table 1. The figure shows that the theoretical solid curve closely tracks all

estimated dots.

Model-Implied

Empirical Numbers

1 2 3 4 5 6
Tf

-0.10

-0.05

0.05

bTf,1

Figure 5. The figure shows theoretical regression coefficients (solid curve) and empiri-

cally estimated coefficients (dots) for different holding periods Tf .

The calibrated long-term mean reversion value αL = 0.0014 implies that traders believe

that the long-term growth rate is very persistent. The calibrated correct long-term mean
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reversion rate α̂L = 0.2043 implies that long-term growth GL(t) mean reverts after about

ln(2)/0.2043 ≈ 3.39 years. This creates a time-series value anomaly matching the empirical

finding that stock returns exhibit mean reversion over horizons of three to five years. The

calibrated mean reversion rate for the short-term growth rate αS = 1.3130 suggests that

GS(t) has a half-life of about ln(2)/1.3130 ≈ 0.53 years, again matching the empirical

finding that momentum persists for only about six months or one year. The implied values

of the two price dampening factors are CG = 0.1009 and CJ = 0.7727. Return momentum

arises from both pricing dampening effects.

3.2. Implications of Calibration for Trading Strategies

The calibration exercise provides practical insights into investment management. Using

the calibrated parameter values in Table 2, we simulate 2000 independent histories of

monthly excess return over 40 years based on (38). We then examine predictive regressions

for one-month returns using several model specifications.16

When only the past six-month return Returnt−6m,t is used to predict the next month’s re-

turn, the coefficient is positive—indicating momentum—and the R-square is 0.0019. When

a proxy for the value, V aluet := P (t) − D(t)/(r + αD)—measuring the arithmetic differ-

ence between market value P (t) and “book value” D(t)/(r + αD)—is added, the R-square

increases to 0.0109. As expected, the estimated coefficient on the value proxy is negative,

indicating that value stocks tend to earn higher returns than growth stocks in our simulated

data sample. The increase in R2, from 0.0019 to 0.0109, indicates that a combination of

value and momentum yields a much higher Sharpe ratio than momentum alone. When

returns over the previous year, previous three years, and previous five years are added to

the regression, the R2 is 0.0120, only a modest increase from 0.0109.

The model assumes that traders in the market observe GL(t), which can be interpreted

as a market consensus estimate of long-term growth. Given GL(t), the implied market

estimate of short-term growth, ḠS(t), can be inferred from prices. When the regression

has only the two variables GL(t) and ḠS(t), it is not surprising that the coefficient on

GL(t) is negative and the coefficient on ḠS(t) is positive. More surprisingly, the R2 is

0.0334, much higher than 0.0109 or 0.0120. The calibrated model is telling us that much

better investment performance can be obtained from a trading strategy which accurately

16We describe this procedure in more detail in online Appendix B.3. Table 1 in the Online Appendix
reports the R-squares and estimates from these regressions.
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distinguishes between long-term growth—to which the market overreacts—and short-term

growth—to which the market underreacts—than using market-to-book ratios and past

returns as proxies for value and momentum. Although the model assumes for simplicity that

GL(t) and therefore ḠS(t) are observable, the practical lesson might be that distinguishing

between the two requires significant investment skill that is well-rewarded with superior

performance.

Equipped with a calibrated structural model of returns dynamics, we next test some

predictions of our model.

3.3. Model Predictions and Empirical Analysis

Time-series momentum exhibits cross-sectional patterns. Cremers and Pareek (2014) find

momentum to be more substantial in stocks with more short-term trading. Moskowitz, Ooi

and Pedersen (2012) find that more liquid contracts in equity-index, currency, commodity,

and bond futures markets exhibit greater momentum. Zhang (2006) and Verardo (2009)

find that momentum returns are larger for stocks with higher analysts’ disagreement. Lee

and Swaminathan (2000) note that momentum tends to be stronger for stocks with higher

trading volume. The predictions of our model are consistent with these stylized facts.

To show this, we first construct several variables. Define trading volume as17

(44) V olume := N Ê

{
|dSn(t)|
dt1/2

}
.

Using equations (20) and (21), the equilibrium price can be written

(45) P (t) =
D(t)

r + αD
+ λ

CL

τ
1/2
I

(
τ
1/2
0 H0(t) + τ

1/2
I N H−n(t)

)
+ λ Sn(t),

where λ is defined as

(46) λ :=
CGσSΩ

1/2τ
1/2
I

(r + αD)(r + αS)CL
.

The parameter λ can be interpreted as permanent price impact since it quantifies how

accumulated inventories Sn(t) affect the price. A smaller price impact parameter λ implies

17Although trading volume is theoretically infinite since inventories follow diffusions with continuous
trading, scaling by dt1/2 makes it finite and proportional to the standard deviations of changes in inventories
over small time periods.
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a deeper and more liquid market.

The variables V olume and λ are both related to disagreement τH/τL. The market tends

to be more liquid and trading volume tends to be higher when there is more disagreement.

Using the calibrated parameter values of the model in Table 2 (varying τH and τL while

holding total precision τ fixed), Figure 6 shows that market depth 1/λ increases in the

degree of disagreement τH/τL since traders provide more liquidity to each other and hold

larger positions. Trading volume tends to increase with disagreement as well.
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Figure 6. The two panels plot ln(1/λ) and ln(V olume) against τH/τL holding τ fixed.

Time-series momentum tends to be more pronounced when disagreement is larger. First,

Figure 7 shows that the theoretical regression coefficient b1/2,1/2 from regressing the cumu-

lative return R(t, t + 1/2) on the cumulative return R(t − 1/2, t), as derived in equation

(A-115) in Appendix A.10, increases in the degree of disagreement τH/τL.
18 Second, Figure

3 in Section 1.3 illustrates that both CG and CJ decrease with disagreement, making price

dampening more significant.

Combining the intuition from both figures, Figure 8 illustrates that time-series momentum

tends to be stronger in the markets with more liquidity and trading volume.

We next examine empirically whether time-series momentum is more pronounced in

stocks with higher trading volume. Following Campbell, Grossman and Wang (1993) and

Lee and Swaminathan (2000), we use stock turnover as a proxy for trading volume.19 For

each month from January 1965 to December 2005, stocks are sorted based on monthly

turnover averaged over the portfolio formation period, where monthly turnover is the ratio

18We set Tl = Tf = 1/2 (six months) in Figures 7 and 8. The regression coefficients bTf ,Tl
also increases

in the degree of disagreement τH/τL for other parameter values of Tl and Tf .
19As noted in Lee and Swaminathan (2000), raw trading volume is unscaled and is likely to be highly

correlated with firm size. In our model of one stock, the concept of trading volume corresponds to turnover.
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Figure 7. Regression coefficient b1/2,1/2 against τH/τL while fixing τ .
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Figure 8. Regression coefficient b1/2,1/2 against ln(1/λ) and ln(V olume) while changing τH/τL.

of the number of shares traded each month to the number of shares outstanding at the end

of the month.

We focus on the stocks of the lowest quintile and highest quintile groups, based on

turnover. Let subscript i refer to stock i. Define Returnt,t+1/2,i as the six month cumulative

return from time t to time t+1/2, define Returnt−1/2,t,i as the six month cumulative return

from time t − 1/2 to time t, and let Dummyt,i denote a dummy variable, which is equal

to one for stocks in the highest quintile and zero for stocks in the lowest quintile, based on

turnover in the previous six months. We estimate the following two models using monthly

Fama–MacBeth cross-sectional regressions:

Model (C) : Returnt,t+1/2,i = a1/2,1/2 + b1/2,1/2Returnt−1/2,t,i + et,t+1/2,i,

Model (D) : Returnt,t+1/2,i = a1/2,1/2 + b1/2,1/2Returnt−1/2,t,i
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+c1/2,1/2Dummyt,i + d1/2,1/2Dummyt,i ×Returnt−1/2,t,i + et,t+1/2,i.

Time-Series Average Slope Coefficients

Variable Model (C) Model (D)

Returnt−1/2,t,i
0.0426
(3.3724)

0.0127
(0.6454)

Dummyt,i
-0.0297
(-2.5476)

Returnt−1/2,t,i ×Dummyt,i
0.0450
(2.3581)

Table 3—Regression Tests of Return Momentum for the Stocks of the Lowest Quintile

and Highest Quintile Based on Trading Volume (Turnover).

This table reports time-series average of slope coefficients estimated from monthly Fama–
MacBeth cross-sectional regressions of models (C) and (D) run from January 1965 to
December 2005 for the stocks of the lowest quintile and highest quintile based on turnover.
The dummy variable (Dummyt,i) is 1 for stocks in the highest turnover quintile and 0 for
stocks in the lowest turnover quintile. The coefficients are the time-series (492 months)
means with t-statistics in parentheses. The standard errors of the time-series means are
computed using the Hansen and Hodrick (1980) correction.

Table 3 reports the slope estimates. Column (C) of Table 3 shows that the slope estimate

is positive and significant, thus confirming the presence of short-run time-series momentum.

Column (D) of Table 3 shows that momentum is more pronounced for stocks with substan-

tial turnover. The coefficient on the interaction term Returnt−1/2,t,i×Dummyt,i is positive
and statistically significant at the 0.1% level, while the coefficient on Returnt−1/2,t,i is no

longer significant. The significantly negative coefficient of Dummyt,i is consistent with the

empirical finding that lower volume (turnover) stocks generally have higher returns con-

ditional on past returns (Lee and Swaminathan (2000)). The empirical results in Table

3 support the theoretical prediction that time-series momentum tends to be greater for

stocks with higher trading volume (turnover).
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4. Conclusion

We develop a dynamic model with discrete trading where traders with heterogeneous be-

liefs and private information solve complicated inference and optimization problems. Even

though the prices fully reflect the average signal at each point in time and traders apply

Bayes law consistently, traders regularly spot profit opportunities and think they can make

money at the expense of others. The price is not equal to the average of traders’ buy-and-

hold valuations due to dampening from both static beliefs aggregation and dynamic beliefs

aggregation. Returns are generally predictable. Different choices of model parameters

generate time-series momentum and time-series mean reversion over different horizons.

Our structural model relates returns to the history of dividends, prices, and long-term

growth rates. We calibrate the model parameter values and demonstrate that our model

can generate quantitatively realistic return dynamics. Time-series momentum tends to be

more pronounced when markets are more liquid and trading volume is more substantial.
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A. Proofs

A.1. The Dynamics of Key State Variables

In this subsection, we derive the conditional expectations of key state variables and the

variance-covariance matrix at period k. Define the N + 1 processes dBn
0 (t), dB

n
n(t), and

dBn
m(t), m = 1, . . . , N , m ̸= n, by

(A-1) dBn
0 (t) = τ

1/2
0

G∗
S(t)−GnS(t)

σS Ω1/2
dt+ dBD(t),

(A-2) dBn
n(t) = τ

1/2
H

G∗
S(t)−GnS(t)

σS Ω1/2
dt+ dBn(t),
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(A-3) dBn
m(t) = τ

1/2
L

G∗
S(t)−GnS(t)

σS Ω1/2
dt+ dBm(t).

The superscript n indicates conditioning on beliefs of trader n. Since trader n’s forecast

of the error G∗
S(t) − GnS(t) is zero given his information set, these N + 1 processes are

independently distributed Brownian motions from the perspective of trader n. In terms of

these Brownian motions, trader n believes that signals change as follows:

(A-4) dH0(t) = −(αS + τ)H0(t) dt+ τ
1/2
0

GnS(t)

σS Ω1/2
dt+ dBn

0 (t),

(A-5) dHn(t) = −(αS + τ)Hn(t) dt+ τ
1/2
H

GnS(t)

σS Ω1/2
dt+ dBn

n(t),

(A-6) dH−n(t) = −(αS + τ)H−n(t) dt+ τ
1/2
L

GnS(t)

σS Ω1/2
dt+

1

N − 1

N∑
m=1
m̸=n

dBn
m(t).

Define

(A-7) Hc
n(t) := Hn(t)+ âH0(t), Hc

−n(t) := H−n(t)+ âH0(t), â :=
τ
1/2
0

τ
1/2
H + (N − 1)τ

1/2
L

.

Using equations (A-4), (A-5), (A-6), and (A-7), write this as a continuous 4-vector

stochastic process y(t) = [D(t), GL(t), H
c
n(t), H

c
−n(t)]

′ satisfying

(A-8) dy(t) = K y(t) dt+ Cz dZ(t),

where K is a 4× 4 matrix and Cz is a 4× 4 matrix given by

(A-9)

K =


−αD 1 σSΩ

1/2τ
1/2
H σSΩ

1/2(N − 1)τ
1/2
L

0 −αL 0 0

0 0 −αS − τ + τ
1/2
H (τ

1/2
H + âτ

1/2
0 ) (N − 1)τ

1/2
L (τ

1/2
H + âτ

1/2
0 )

0 0 τ
1/2
H (τ

1/2
L + âτ

1/2
0 ) −αS − τ + (N − 1)τ

1/2
L (τ

1/2
L + âτ

1/2
0 )

 ,
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(A-10) Cz =


σD 0 0 0

0 σL 0 0

â 0 1 0

â 0 0 1√
N−1

 ,

and dZ(t) = [dBn
0 (t), dBL(t), dB

n
n(t),

1√
N−1

∑N
m=1
m̸=n

dBn
m(t)]

′ is a 4-dimensional Brownian mo-

tion.

Using results about linear continuous-time stochastic processes, we can represent the

process yk+1 = [Dk+1, GL,k+1, H
c
n,k+1, H

c
−n,k+1]

′ in an integral form as

(A-11) yk+1 = eKh yk +

∫ (k+1)h

kh

eK((k+1)h−t) Cz dZ(t).

Equation (A-11) implies that

(A-12) Enk{yk+1} = eKh
[
Dk, GL,k, H

c
n,k, H

c
−n,k

]′
,

(A-13) Vark{yk+1} =

∫ h

0

eK(h−t)CzC
′
z e

K′(h−t) dt.

We now derive Enk{D̆k+1}, Vark{D̆k+1}, and Cov{D̆k+1, yk+1}. Define

(A-14) y̆k+1 = erh
∫ (k+1)h

kh

e−r(t−kh) y(t)dt.

It can be shown that

(A-15)

y̆k+1 = (K−rI)−1
( (

e(K−rI)h−I
)
erh yk+

∫ (k+1)h

kh

eK((k+1)h−t)CzdZ(t)−
∫ (k+1)h

kh

e−r(t−(k+1)h)CzdZ(t)
)
.

Equation (A-15) implies that Enk{D̆k+1} is given by the first element in the 4 × 1 vector

erh(K − rI)−1
(
e(K−rI)h−I

)
yk. We can then derive

(A-16)

Cov{yk+1, y̆k+1} = Vark{yk+1}(K ′ − rI)−1 − (K + rI)−1
(
e(K+rI)h−I

)
CzC

′
z(K

′ − rI)−1,
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Cov{y̆k+1, y̆k+1} =
(
(K − rI)−1Vark{yk+1} − (K − rI)−1CzC

′
z(e

(K+rI)h−I)′(K ′ + rI)−1
)
(K ′ − rI)−1

−
(
(K2 − r2I)−1(e(K+rI)h−I) + 1− e2rh

2r
(K − rI)−1

)
CzC

′
z(K

′ − rI)−1.

(A-17)

Then Vark{D̆k+1} is the (1,1) entry of the matrix Cov{y̆k+1, y̆k+1} and Cov{D̆k+1, yk+1} is

given by the first column of the matrix Cov{yk+1, y̆k+1}.

A.2. Proof of Theorem 1

To solve the equilibrium, we conjecture that the price in period k is a linear function of

Dk, GL,k, and ḠS,k, of the form

(A-18) Pk =
Dk

r + αD
+

GL,k

(r + αD)(r + αL)
+ CG

ḠS,k

(r + αD)(r + αS)
.

Trader n’s problem (10) can be rewritten in discrete-time form as (12) where Un,j is

obtained by solving the maximization problem (14) subject to constraint (15). The first

order condition yields

(A-19) c(jh+ t) = − 1

A

(
(ρ− r)t+ ln

λ

A

)
,

where λ is the Lagrange multiplier. By setting t = 0 in equation (A-19), we get c(jh) =

− 1
A
ln λ

A
. Therefore,

(A-20) c(jh+ t) = c(jh) +
1

A
(r − ρ)t.

Substituting (A-20) into constraint (15), we have

(A-21) c(jh) =
rh

1− e−rh
cn,j −

r − ρ

Ar(1− e−rh)

(
1− (rh+ 1) e−rh

)
.

From equations (A-20), (A-21), and (14), we get

(A-22) Un,j = −h exp
(
−A rh

1− e−rh
cn,j

)
ϕ(r, ρ, h),

where ϕ(r, ρ, h) does not depend on cn,j and is defined as

(A-23) ϕ(r, ρ, h) =
1− e−rh

rh
exp

(
r − ρ

r(1− e−rh)

(
1− (1 + rh) e−rh

))
= 1− 1

2
ρh+O(h2).
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Trader n’s problem (12) is then equivalent to

(A-24) max
{cn,j},j=k,k+1,...,∞
{Sn,j},j=k,k+1,...,∞

Enk
∑
j=k

−h e−ρ(j−k)h exp
(
−A rh

1− e−rh
cn,j

)
,

subject to the budget constraint (13). We conjecture and verify that the value function

has the specific quadratic exponential form

(A-25)

Vk(Wn,k, H
c
n,k, H

c
−n,k) = − exp

(
ψ0 + ψWWn,k +

1
2
ψnn(H

c
n,k)

2 + 1
2
ψxx(H

c
−n,k)

2 + ψnxH
c
n,kH

c
−n,k

)
.

The five constants ψ0, ψW , ψnn, ψxx, and ψnx have values consistent with a steady-state

equilibrium. The terms ψnn, ψxx, and ψnx capture the value of future trading opportunities

based on current public and private information. The value of trading on innovations to

future information is built into the constant term ψ0.

Then the value function at period k + 1 has the form

(A-26)

Vk+1 = − exp
(
ψ0 + ψWWn,k+1 +

1
2
ψnn(H

c
n,k+1)

2 + 1
2
ψxx(H

c
−n,k+1)

2 + ψnxH
c
n,k+1H

c
−n,k+1

)
.

The Hamilton-Jacobi-Bellman (HJB) equation for the discrete problem is

(A-27)

Vk(Wn,k, H
c
n,k, H

c
−n,k) = max

cn,k

Sn,k

{
−h exp

(
− Arh

1− e−rh
cn,k

)
+ e−ρh Enk Vk+1(Wn,k+1, H

c
n,k+1, H

c
−n,k+1)

}
,

where the dynamics of wealth are given by (13) and the dynamics of Hc
n,k and Hc

−n,k can

be obtained from equations (A-4), (A-5), (A-6), and (A-7). Define

xk+1 :=
[
Dk+1, D̆k+1, GL,k+1, H

c
n,k+1, H

c
−n,k+1

]′
−
[
Enk Dk+1,E

n
k D̆k+1,E

n
k GL,k+1,E

n
k H

c
n,k+1,E

n
k H

c
−n,k+1

]′
,

(A-28)

where D̆k+1 is as defined in equation (11). Then Enk Vk+1 can be obtained using

(A-29) Enk
{
e
−α

(
Ā+B′x+

1
2
x′Cx

) }
=

1√
|I + αCΣ|

e
−α

(
Ā−1

2
αB′Σ(I+αCΣ)−1B

)
,

where x is an n× 1 normal vector with mean zero and covariance matrix Σ, Ā is a scalar,

B is an n× 1 vector, C is an n× n symmetric matrix, I is the n× n identity matrix. The

value of Σ can be obtained from Section A.1. More specifically, Vark{D̆k+1} is the (1,1)
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entry of the matrix Cov{y̆k+1, y̆k+1} in equation (A-17), Cov{D̆k+1, yk+1} is given by the

first column of the matrix Cov{yk+1, y̆k+1} in equation (A-16), and Vark{yk+1} is given in

equation (A-13). Define α, Ā, B, and C as

Ā =ψ0 + ψW erh (Wn,k − hcn,k − Sn,kPk) + ψWSn,k

(
Enk D̆k+1 +

Enk Dk+1

r + αD

+
Enk GL,k+1

(r + αD)(r + αL)
+
CGσSΩ

1/2(τ
1/2
H + (N − 1)τ

1/2
L )

N(r + αD)(r + αS)

(
Enk H

c
n,k+1 + (N − 1) Enk H

c
−n,k+1

))
+ 1

2
ψnn(E

n
k H

c
n,k+1)

2 + 1
2
ψxx(E

n
k H

c
−n,k+1)

2 + ψnxH
c
n,k+1H

c
−n,k+1,

(A-30)

(A-31) α = −1, B = ψWψBSn,k + φB, C =

[
03×3 03×2

02×3 c2×2

]
,

where

(A-32) c2×2 =

[
ψnn ψnx

ψnx ψxx

]
, ψB = ψB1 +

CGσSΩ
1/2(τ

1/2
H + (N − 1)τ

1/2
L )

N(r + αD)(r + αS)
ψB2,

(A-33) ψB1 =

[
1

r + αD
, 1,

1

(r + αD)(r + αL)
, 0, 0

]′
, ψB2 = [0, 0, 0, 1, N − 1]′ ,

(A-34) φB =
[
0, 0, 0, ψnn E

n
k H

c
n,k+1 + ψnx E

n
k H

c
−n,k+1, ψxx E

n
k H

c
−n,k+1 + ψnx E

n
k H

c
n,k+1

]
.

Taking the first order condition with respect to cn,k in the HJB equation (A-27) yields

(A-35) c∗n,k = −1− e−rh

Arh

(
(r − ρ)h+ ln

(
ψW (1− e−rh)

Arh
Enk Vk+1

))
.

Substituting (A-35) into the HJB equation (A-27), we obtain

(A-36) Vk = e−ρh
(
1− ψW (erh−1)

Ar

)
Enk Vk+1.

Taking the first order condition with respect to Sn,k yields

(A-37) S∗
n,k =

Enk(Pk+1 + D̆k+1)− erh Pk + φ′
BΣ(I − CΣ)−1ψB

−ψWψ′
BΣ(I − CΣ)−1ψB

.



46

It can be shown that optimal trading strategy S∗
n,k is a linear function of the state variables

Hc
n,k and Hc

−n,k.

Define constants cd1, cd2, cn1, cx1, cn2, and cx2 by

(A-38)

cd1 :=
σSΩ

1/2
(
e−αSh − e−αDh

)
αD − αS

, cd2 :=
σSΩ

1/2
(
(r + αS) e

−(r+αD)h −(r + αD) e−(r+αS)h +αD − αS

)
(αD − αS)(r + αD)(r + αS)

,

cn1 :=
e−(αS+τ)h

(
eτh

(
τ
1/2
H (τ0 + τH) + (N − 1)τHτ

1/2
L

)
+ (N − 1)τ

1/2
L

(
τ0 + τ

1/2
H τ

1/2
L + (N − 1)τL

))
(
τ
1/2
H + (N − 1)τ

1/2
L

)
τ

,

cx1 :=
e−(αS+τ)h

(
eτh −1

)
(N − 1)τ

1/2
L

(
τ0 + (N − 1)τ

1/2
H τ

1/2
L + τH

)
(
τ
1/2
H + (N − 1)τ

1/2
L

)
τ

,

cn2 :=
e−(αS+τ)h

(
eτh −1

)
τ
1/2
H

(
τ0 + τ

1/2
H τ

1/2
L + (N − 1)τL

)
(
τ
1/2
H + (N − 1)τ

1/2
L

)
τ

,

cx2 :=
e−(αS+τ)h

(
eτh(N − 1)τ

1/2
L

(
τ0 + τ

1/2
H τ

1/2
L + (N − 1)τL

)
+ τ

1/2
H (τ0 + τH) + (N − 1)τHτ

1/2
L

)
(
τ
1/2
H + (N − 1)τ

1/2
L

)
τ

.

Then φB, defined in equation (A-34), can be rewritten as

φB = φB1H
c
n,k + φB2H

c
−n,k, where

φB1 := [0, 0, 0, ψnncn1 + ψnxcn2, ψxxcn2 + ψnxcn1]
′ ,

φB2 := [0, 0, 0, ψnncx1 + ψnxcx2, ψxxcx2 + ψnxcx1]
′ .

(A-39)

The market clearing condition
∑N

n=1 S
∗
n,k = 0 and equation (A-37) imply that

(A-40) CG =

e−αSh − erh − (r+αD)(r+αS)

σSΩ1/2
(
τ
1/2
H

+(N−1)τ
1/2
L

) (φ′
B1 + φ′

B2)Σ(I − CΣ)−1ψB1

Nτ0+(τ
1/2
H

+(N−1)τ
1/2
L

)2

Nτ
e−αSh − erh +

(N−1)(τ
1/2
H

−τ
1/2
L

)2

Nτ
e−(αS+τ)h + 1

N
(φ′

B1 + φ′
B2)Σ(I − CΣ)−1ψB2

.

Then, from equations (A-37) and (A-40), the optimal inventory for trader n is given by

(A-41) S∗
n,k = CL

(
Hc
n,k −Hc

−n,k
)
,

where the constant CL is defined as
(A-42)

CL =
1

rANτ(r + αD)(r + αS)ψ
′
BΣ(I − CΣ)−1ψB

(
Nτ

(
σSΩ

1/2τ
1/2
H (erh − e−αSh) + (r + αD)(r + αS)φ

′
B1Σ(I − CΣ)−1ψB1

)
+ CGσSΩ

1/2

(
τ
(
τ
1/2
H + (N − 1)τ

1/2
L

)
φ′
B1Σ(I − CΣ)−1ψB2 + e−αSh τ

1/2
H

(
Nτ0 +

(
τ
1/2
H + (N − 1)τ

1/2
L

)2
)

− erh
(
τ
1/2
H + (N − 1)τ

1/2
L

)
τ − e−(αS+τ)h(N − 1)

(
τ
1/2
H − τ

1/2
L

)(
τ0 + τ

1/2
H τ

1/2
L + (N − 1)τL

)))
.
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Equations (A-36) and (A-25) imply

(A-43) ln(−En
k Vk+1) = ψ0 + ψWWn,k + 1

2
ψnn(H

c
n,k)

2 + 1
2
ψxx(H

c
−n,k)

2 + ψnxH
c
n,kH

c
−n,k + ρh− ln

(
1−

ψW (erh −1)

Ar

)
.

Substituting (13), (A-12), (A-18), (A-26), (A-35), (A-41), and (A-43) into the HJB equa-

tion (A-27) and setting the constant term and the coefficients of Wn,k, (H
c
n,k)

2, (Hc
−n,k)

2,

and Hc
n,k H

c
−n,k to be zero, we obtain five equations, from which we can find five unknown

parameters ψ0, ψW , ψnn, ψnx, and ψxx.

By setting the constant term and coefficient of Wn,k to be zero, we obtain

(A-44) ψW = −rA, ψ0 =
(r − ρ)h− (erh−1) ln 1−e−rh

h
− ln

√
|I − CΣ|

erh−1
.

By setting the coefficients of (Hc
n,k)

2, (Hc
−n,k)

2 and Hc
n,k H

c
−n,k to be zero, we obtain three

polynomial equations in the three unknowns ψnn, ψxx, and ψnx. These three equations in

three unknowns can be written as follows:

0 =− 1
2
erh ψnn + rACLCG

(
erh−cn1 − (N − 1)cn2

) σSΩ1/2(τ
1/2
H + (N − 1)τ

1/2
L )

N(r + αD)(r + αS)

− rACL

(
erh cd2 +

cd1
r + αD

)
τ
1/2
H + 1

2
ψnnc

2
n1 +

1
2
ψxxc

2
n2 + ψnxcn1cn2

+ 1
2
r2A2C2

Lψ
′
BΣ(I − CΣ)−1ψB − rACLψ

′
BΣ(I − CΣ)−1φB1 +

1
2
φ′
B1Σ(I − CΣ)−1φB1,

(A-45)

0 =− 1
2
erh ψxx + rACLCG

(
− erh(N − 1) + cx1 + (N − 1)cx2

) σSΩ1/2(τ
1/2
H + (N − 1)τ

1/2
L )

N(r + αD)(r + αS)

+ rACL

(
erh cd2 +

cd1
r + αD

)
(N − 1)τ

1/2
L + 1

2
ψxxc

2
x2 + ψnxcx1cx2

+ 1
2
r2A2C2

Lψ
′
BΣ(I − CΣ)−1ψB + rACLψ

′
BΣ(I − CΣ)−1φB2 +

1
2
φ′
B2Σ(I − CΣ)−1φB2,

(A-46)

0 = erh ψnx + rACLCG
(
erh(N − 2)− cx1 − (N − 1)cx2 + cn1 + (N − 1)cn2

) σSΩ1/2(τ
1/2
H + (N − 1)τ

1/2
L )

N(r + αD)(r + αS)

− rACL

(
erh cd2 +

cd1
r + αD

)(
(N − 1)τ

1/2
L − τ

1/2
H

)
+ ψnncn1cx1 + ψxxcn2cx2 + ψnx(cn1cx2 + cx1cn2)

− r2A2C2
Lψ

′
BΣ(I − CΣ)−1ψB − rACLψ

′
BΣ(I − CΣ)−1(φB2 − φB1) + φ′

B1Σ(I − CΣ)−1φB2.

(A-47)
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To summarize, optimal consumption is defined in (A-35), the optimal strategy is defined

in (A-41), and the endogenous coefficient CL is defined in (A-42). The equilibrium price is

defined in (A-18), and the endogenous coefficient CG is defined in (A-40). Parameters ψW

and ψ0 are presented in (A-44). Parameters ψnn, ψnx, ψxx are solved numerically from the

system of the three equations (A-45)–(A-47). These results are presented in Theorem 1.

A.3. Dampening Effect: The Present Value of Expected
Cumulative Dividends and Cash Flow

In this section, we discuss expectations of each trader about how his own valuation, the

average valuation of other traders, and the market price evolve over time. The discussion

here follows Kyle, Obizhaeva and Wang (2017), with some changes to accommodate dif-

ferences between a setting with imperfect competition and the competitive setting of this

paper. In line with Samuelson (1965), the trader’s own valuation is a martingale with

respect to the trader’s own filtration. Each trader believes the average valuation of other

traders and market prices follow a more complicated dynamics.

The coefficient τ
1/2
H in the second term on the right hand side of (A-5) is different from

the coefficient τ
1/2
L in the second term on the right hand side of (A-6). This difference is the

key driving force behind the price-dampening effect resulting from the Keynesian beauty

contest. It captures the fact that—in addition to disagreeing about the value of the asset

in the present—traders also disagree about the dynamics of their future valuations.

From equations (19), (A-4), (A-5), and (A-6), we can derive the stochastic process for

GnS(t) and G−nS(t) :=
1

N−1

∑
m=1,...,N ; m̸=nGmS(t) as follows:

(A-48) dGnS(t) = −αS GnS(t)dt+ σS Ω
1/2
(
τ
1/2
0 dBn

0 (t) + τ
1/2
H dBn

n(t) + τ
1/2
L

N∑
m=1
m̸=n

dBn
m(t)

)
,

dG−nS(t) =− (αS + τ)G−nS(t)dt+
(
τ0 + τ

1/2
L

(
2τ

1/2
H + (N − 2)τ

1/2
L

))
GnS(t)dt

+ σS Ω
1/2
(
τ
1/2
0 dBn

0 (t) + τ
1/2
L dBn

n(t) +
τ
1/2
H + (N − 2)τ

1/2
L

N − 1

N∑
m=1
m̸=n

dBn
m(t)

)
.

(A-49)

From (A-49), when GmS(t) = GnS(t), trader n believes that other traders’ estimates of

expected short-term growth rates GmS(t) will mean-revert to zero at a rate αS + (τ
1/2
H −

τ
1/2
L )2 > αS. From (A-48), trader n believes that his own estimate of expected short-term
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growth rate GnS(t) will mean-revert to zero at a rate αS.

From equations (1), (2), (3), (A-48), and (A-49), the expected dynamics of GnS(t),

G−nS(t), GL(t), and D(t) are given by

(A-50) En0{GnS(t)} = e−αStGnS(0),

(A-51)

En0{G−nS(t)} =
1

τ

(
τ0 + τ

1/2
L

(
2τ

1/2
H + (N − 2)τ

1/2
L

)) (
e−αSt− e−(αS+τ)t

)
GnS(0)+e−(αS+τ)tG−nS(0),

(A-52) En0{GL(t)} = e−αLtGL(0),

(A-53)

En0{D(t)} =
1

αD − αS

(
e−αSt− e−αDt

)
GnS(0)+

1

αD − αL

(
e−αLt− e−αDt

)
GL(0)+e−αDtD(0).

The present value of expected cumulative dividends and cash flow from liquidating one

share of the stock at date t, using trader n’s estimate of fundamental value, is

(A-54)

PVn(0, t) := En0

{∫ t

0

e−ruD(u)du+e−rt
( D(t)

r + αD
+

GnS(t)

(r + αD)(r + αS)
+

GL(t)

(r + αD)(r + αL)

)}
.

Substituting (A-50) and (A-53) into (A-54), it can be shown that (A-54) is equal to

(A-55) PVn(0, t) = Fn(0) =
D(0)

r + αD
+

GnS(0)

(r + αD)(r + αS)
+

GL(0)

(r + αD)(r + αL)
.

The present value of expected cumulative dividends and cash flow from liquidating one

share of the stock at date t, using others’ valuations, is

(A-56)

PV−n(0, t) := En0

{∫ t

0

e−ruD(u)du+e−rt
( D(t)

r + αD
+

GL(t)

(r + αD)(r + αL)
+

G−nS(t)

(r + αD)(r + αS)

)}
.

Assuming GmS(0) = GnS(0) = Ḡ(0) and substituting (A-50)–(A-53) into (A-56), it can be

shown that equation (A-56) is equal to

(A-57) PV−n(0, t) = Fn(0) +
(τ

1/2
H − τ

1/2
L )2

τ(r + αS)(r + αD)

(
e−(r+αS+τ)t− e−(r+αS)t

)
GnS(0).

Similarly, the present value of expected cumulative dividends and cash flow from liqui-
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dating one share of the stock at date t at the equilibrium price P (t) is

(A-58)

PVp(0, t) := En0

{∫ t

0

e−ruD(u)du+e−rt
( D(t)

r + αD
+

GL(t)

(r + αD)(r + αL)
+

CG ḠS(t)

(r + αD)(r + αS)

)}
.

Substituting (A-50)–(A-53) into (A-58), it can be shown that (A-58) is equivalent to

PVp(0, t) =Fn(0) +
CG

(
N − (τ

1/2
H − τ

1/2
L )2τ−1 (N − 1)

)
−N

N (r + αS) (r + αD)
e−(r+αS)t GnS(0)

+
CG (τ

1/2
H − τ

1/2
L )2τ−1 (N − 1)

N (r + αS) (r + αD)
e−(r+αS+τ)t GnS(0).

(A-59)

We next provide results which calculate the derivative of the present value of cash flows

PV−n(0, t) with respect to time. From (A-56), it follows that

(A-60)
dPV−n(0, t)

dt
=

(τ
1/2
H − τ

1/2
L )2 GnS(0) e−(r+αS)t

τ(r + αS)(r + αD)

(
(r + αS)− (r + αS + τ) e−τt

)
.

Equation (A-60) implies that dPV−n(0, t)/dt < 0 iff t < 1
τ
ln
(
1 + τ

r+αS

)
.

We now calculate the derivative of the present value of cash flows PVp(0, t) with respect

to time. From (A-59), it follows that

dPVp(0, t)

dt
=

GnS(0) e
−(r+αS)t

N (r + αS) (r + αD)

((
N − CG

(
N − (τ

1/2
H − τ

1/2
L )2τ−1(N − 1)

))
(r + αS)

CG (τ
1/2
H − τ

1/2
L )2τ−1(N − 1)(r + αS + τ) e−τt

)
.

(A-61)

Clearly, (A-61) implies dPVp(0, t)/dt→ 0 when t→ ∞. Define

(A-62) t̂ := −1

τ
ln

((
1 +

(1− CG)Nτ

CG(τ
1/2
H − τ

1/2
L )2(N − 1)

)
r + αS

r + αS + τ

)
.

Equation (A-61) implies dPVp(0, t)/dt > 0 if and only if t > t̂. It can be shown that t̂ > 0

if and only if CG > ĈG :=
(
1 + (1− 1/N)(τ

1/2
H − τ

1/2
L )2/(r + αS)

)−1

. This further yields

the following results:

• If CG ≤ ĈG, then dPVp(0, t)/dt > 0 for all t > 0.
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• If CG > ĈG, then dPVp(0, t)/dt = 0 for t = t̂, dPVp(0, t)/dt > 0 for t > t̂, and

dPVp(0, t)/dt < 0 for t < t̂.

From Proposition 1, CG ≤ ĈG holds in the limiting case with h = 0; therefore, PVp(0, t)

increases monotonically over time for h = 0.

A.4. Proof of Proposition 1

Assume τH > τL. Information cannot have negative value in the value function (A-25)

since traders can ignore it. Therefore, the 2 × 2 matrix

(A-63)

[
ψnn ψnx

ψnx ψxx

]

must be negative semi-definite. This implies ψnn ≤ 0, ψxx ≤ 0, and ψ2
nx ≤ ψnnψxx. It

follows that ψnn + ψxx + 2ψnx ≤ 0. In the continuous-time model (h→ 0), we can show

(A-64)

CG =
N(r + αS)

(
σSΩ

1/2 + σDâ(ψnn + ψxx + 2ψnx)/
(
τ
1/2
H + (N − 1)τ

1/2
L

))
σSΩ1/2

(
N(r + αS) + (N − 1)

(
τ
1/2
H − τ

1/2
L

)2 − (1 +Nâ2)(ψnn + ψxx + 2ψnx)
) .

Then, from equation (A-64), we have

(A-65) CG ≤
(
1 + (1− 1/N)(τ

1/2
H − τ

1/2
L )2/(r + αS)

)−1
< 1.

Jensen’s inequality implies 0 < CJ < 1.

Assuming τH = τL, then clearly ψnn = ψnx = ψxx = 0 solves the three equations (A-45)–

(A-47), and additionally we get CG = 1 and CL = 0 from equations (A-40) and (A-42).

There is no trading.

A.5. Proof of Proposition 2

We set τL = 0 and h → 0, and then evaluate the solution in the limit as N → ∞ and

â → 0. We conjecture and verify that ψnn = ψ̄nn, ψnx = ψ̄nx, and ψxx = ψ̄xx, where ψ̄nn,

ψ̄nx, and ψ̄xx are constants that do not depend on N .

Solving the system of equations (A-45)–(A-47) yields

(A-66) ψ̄nn = 1
2

(
r + 2(αS + τ − τH)−

(
(r + 2(αS + τ − τH))

2 +
4Ωσ2

SτH
σ2
D

)1/2
)
,
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(A-67) ψ̄nx =
Ωσ2

SτH/σ
2
D

r + 2(αS + τ)− τH − ψ̄nn
,

(A-68) ψ̄xx =
1

r + 2αS + 2τ

(
ψ̄2
nx −

Ωσ2
SτH
σ2
D

)
.

Equations (A-64) and (A-42) imply

(A-69) CG → r + αS
r + αS + τ

< 1, CL =
Ω1/2σSτ

1/2
H (r + αD)

Arσ2
D

.

A.6. CJ , CG, and Risk Aversion

The following proposition describes how CJ and CG depend on risk aversion.

PROPOSITION 4: The constants CJ and CG do not depend on risk aversion A.

It can be shown that parameters CJ and CG remain the same when the risk aversion

parameter A changes.

Let a vector [ψ∗
nn, ψ

∗
nx, ψ

∗
xx] be a solution to the system (A-45)–(A-47) for exogenous

parameters A, σD, σS, r, αS, αD, τ0, τL, and τH . If risk aversion is rescaled by factor F from

A to A/F and other exogenous parameters are kept unchanged, then it is straightforward

to show that the vector [ψ∗
nn, ψ

∗
nx, ψ

∗
xx] is still the solution to the system (A-45)–(A-47).

From equations (46), (A-64), and (A-42), it then follows that CL changes to CLF , λ changes

to λ/F , but CG remains the same.

A.7. Proof of Theorem 2

Define a and b as

(A-70) a :=
σS CG Ω1/2

(r + αD)(r + αS)
(αS + r + τ),

(A-71) b :=
σ̂S Ω̂

1/2

r + αD
+

σS CG Ω1/2

(r + αD)(r + αS)

(
τ
1/2
0 τ̂

1/2
0 + τ

1/2
I N τ̂

1/2
I

)
.

From direct calculation, the uncertainty term dB̂r(t) in equation (38) is defined as

(A-72)

dB̂r(t) :=
σS CG Ω1/2

(r + αD)(r + αS)

(
τ
1/2
0 dB∗

0(t) + τ
1/2
I N dB̄∗(t)

)
+

σD
(r + αD)

dB∗
0(t)+

σLdBL(t)

(r + αD)(r + αL)
.
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The processes dB̄∗(t) and dB∗
0(t), defined as

(A-73) dB̄∗(t) := τ̂
1/2
I (σ̂S Ω̂

1/2)−1 (G∗
S(t)− ĜS(t)) dt+

1

N

N∑
n=1

dB̂n(t),

(A-74) dB∗
0(t) := τ̂

1/2
0 (σ̂S Ω̂

1/2)−1 (G∗
S(t)− ĜS(t)) dt+ dB0(t),

are Brownian motions under the empirically correct beliefs. Note that the variance of

dB∗
0(t) is equal to one, but the variance of dB̄∗(t) is equal to 1/N per unit of time. So the

instantaneous variance of the excess return is given by

(A-75)

V̂ar

{
dB̂r(t)

dt1/2

}
=
( σD
r + αD

+
σS Ω

1/2 CG τ
1/2
0

(r + αD)(r + αS)

)2
+
(σS Ω

1/2 CG)
2 N τI

(r + αD)2(r + αS)2
+

σ2
L

(r + αD)2(r + αL)2
.

From equation (37), we obtain

(A-76) H(t) =

(
P (t)− D(t)

r + αD
− GL(t)

(r + αD)(r + αL)

)
(r + αD)(r + αS)

CG σS Ω1/2
.

We also have the following relationship between traders’ signals Hn(t) and the and the

statistic Ĥn(t), n = 0, 1, . . . , N :

(A-77) Ĥn(t) = Hn(t) + (αG + τ − α̂S − τ̂)

∫ t

u=−∞
e−(α̂S+τ̂) (t−u) Hn(u) du.

Substituting (A-76) and (A-77) into (38) yields (39), where α1, α2, and α3 are defined as

(A-78) α1 :=

(
b
τ̂
1/2
I

τ
1/2
I

− a

)
(r + αD) (r + αS)

CG σS Ω1/2
,

(A-79) α2 := b
τ̂
1/2
I

τ
1/2
I

(αS + τ − α̂S − τ̂) (r + αD) (r + αS)

CG σS Ω1/2
,

(A-80) α3 := −b τ
1/2
I τ̂

1/2
0 − τ̂

1/2
I τ

1/2
0

τ
1/2
I

,

with a and b defined in equations (A-70) and (A-71).
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A.8. Proof of Theorem 3

Using the definitions of H(t) and Ĥ(t) in equations (32) and (31)—as well as equations

(27), (30), and (33)—we can write a continuous 2-vector stochastic process yH(t) = [H(t), Ĥ(t)]′

satisfying the linear stochastic differential equation

(A-81) dyH(t) = KH yH(t) dt+ CH dZH(t),

where KH is a 2× 2 matrix and CH is a 2× 2 matrix given by

(A-82) KH =

[
−αS − τ τ

1/2
0 τ̂

1/2
0 +N τ̂

1/2
I τ

1/2
I

0 −α̂S

]
, CH =

[
τ
1/2
0 N τ

1/2
I

τ̂
1/2
0 N τ̂

1/2
I

]
.

Using an empirically correct specification, the vector dZH(t) = [dB∗
0(t), dB̄

∗(t)]′ is a 2× 1-

dimensional Brownian motion, where dB∗
0(t) is a Brownian motion with variance of one

defined in equation (A-74), and dB̄∗(t) is a Brownian motion with variance 1/N defined in

equation (A-73).

Using results about linear continuous-time stochastic processes, we can represent the

process yH(t) = [H(t), Ĥ(t)]′ in an integral form as

(A-83) yH(s) = eKH (s−t) yH(t) +

∫ s

u=t

eKH (s−u) CH dZH(u).

It can be also shown that the exponential 2× 2 matrix eKH t is given by

(A-84) eKH t =

[
e−(αS+τ) t τ

1/2
0 τ̂

1/2
0 +N τ̂

1/2
I τ

1/2
I

τ+αS−α̂S
(e−α̂S t− e−(αS+τ) t)

0 e−α̂S t

]
.

Plug eKH t back into equation (A-83) to obtain recursive formulas for the stochastic vec-

tor yH(s) = [H(s), Ĥ(s)]′ as a function of yH(t) = [H(t), Ĥ(t)]′. Use this to express the

cumulative holding period return R(t, t+ T ) as a linear function of H(t) and Ĥ(t):

(A-85) R(t, t+ T ) = ζ2(T ) Ĥ(t)− ζ1(T )H(t) +
(αL − α̂L)(1− e−α̂LT )

(r + αD)(r + αL)α̂L
GL(t) + B̄(t, t+ T ),
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where

B̄(t, t+ T ) :=

∫ t+T

s=t

∫ t+T

u=s

[−a, b] eKH(u−s)CH du dZH(s) +

∫ t+T

s=t

σL
(r + αD)(r + αL)

dBL(s)

+

∫ t+T

s=t

dB̂r(s) +
(αL − α̂L)σL

(r + αD)(r + αL)

∫ t+T

s=t

∫ t+T

u=s

e−α̂L(u−s) du dBL(s),

(A-86)

(A-87) ζ1(T ) :=
a

αS + τ

(
1− e−(αS+τ)T

)
,

(A-88) ζ2(T ) := b
1− e−α̂ST

α̂S
−a τ

1/2
0 τ̂

1/2
0 +Nτ̂

1/2
I τ

1/2
I

α̂S (αS + τ)

(
1+

α̂S e
−(αS+τ)T −(αS + τ) e−α̂ST

τ + αS − α̂S

)
.

The constants a and b are as defined in equations (A-70) and (A-71). It can be shown that

ζ1(T ) > 0 and ζ2(T ) > 0. Since both H(t) and Ĥ(t) can be recovered from the history

of prices P (t), dividends D(t), and long-term dividend growth rate GL(t), the cumulative

holding-period return R(t, t+ T ) can be expressed as in equation (42), where

(A-89) β1(T ) :=

(
ζ2(T )

τ̂
1/2
I

τ
1/2
I

− ζ1(T )

)
(r + αD) (r + αS)

CG σS Ω1/2
,

(A-90) β2(T ) := ζ2(T )
τ̂
1/2
I

τ
1/2
I

(αS + τ − α̂S − τ̂) (r + αD) (r + αS)

CG σS Ω1/2
,

(A-91) β3(T ) := ζ2(T )
τ̂
1/2
I τ

1/2
0 − τ

1/2
I τ̂

1/2
0

τ
1/2
I

.

A.9. Proof of Proposition 3

When the traders use an empirically correct value for total precision of information flow

and the parameters describing the short-term growth rate, the expected holding-period
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excess return can be written

Êt{R(t, t+ T )} =
(
τ̂
1/2
I ζ2(T )− τ

1/2
I ζ1(T )

)(r + αD)(r + αS)

CGσSΩ1/2τ
1/2
I

(
P (t)− D(t)

r + αD
− GL(t)

(r + αD)(r + αL)

)
−(α̂L − αL)(1− e−α̂LT )

(r + αD)(r + αL)α̂L
GL(t)−

(
τ̂
1/2
I /τ

1/2
I − 1

)
ζ2(T ) τ

1/2
0 H0(t).

(A-92)

Direct computation shows that the coefficient of P (t)− D(t)
r+αD

− GL(t)
(r+αD)(r+αL)

in Proposition

3 is positive and monotonically increases in the horizon T . The coefficient of H0(t) in

Proposition 3 is negative. In addition, it can be shown that the coefficient of the first term,

ζ2(T )τ̂
1/2
I − ζ1(T )τ

1/2
I > 0, can be decomposed to two terms:

σSΩ
1/2

r + αD
(1− CG)τ

1/2
I

1− e−αST

αS
+

σSΩ
1/2

(r + αD)αS(r + αS)

(
τ̂
1/2
I − τ

1/2
I

)
·
((

1− e−αST
)(

r + αS −
CGrτ0
αS + τ

)
+
CG(αS + r + τ)αSτ0

(αS + τ)τ

(
e−αST − e−(αS+τ)T

))
.

(A-93)

The first term with 1 − CG > 0 results from the price dampening effect of the Keynesian

beauty contest, and the second term with τ̂
1/2
I − τ

1/2
I > 0 results from the price dampening

effect of CJ < 1.

A.10. Covariance and Correlation of R(t− Tl, t) and R(t, t+ Tf)

We first derive the steady-state unconditional variance-covariance matrix of H(t) and

Ĥ(t). Define the steady-state unconditional variance-covariance matrix of H(t) and Ĥ(t)

as Q =
[
[q11, q12], [q12, q22]

]
. In the steady state, we have

(A-94) Kh Q+QK ′
h + Ch C

′
h = 0.

It can be shown that

(A-95) q11 =
τ0 +N τI
2(αS + τ)

+
(2α̂S + τ̂) (τ

1/2
0 τ̂

1/2
0 +N τ̂

1/2
I τ

1/2
I )2

2α̂S (αS + α̂S + τ) (αS + τ)
,

(A-96) q12 =
(2α̂S + τ̂) (τ

1/2
0 τ̂

1/2
0 +N τ̂

1/2
I τ

1/2
I )

2α̂S (αS + τ + α̂S)
, q22 =

τ̂

2α̂S
.

We now calculate the covariance of R(t− Tl, t) and R(t, t+ Tf ). Since the unconditional
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means of R(t− Tl, t) and R(t, t+ Tf ) are zero, equations (A-83) and (A-85) yield

Cov{R(t− Tl, t), R(t, t+ Tf )} = Ê{R(t− Tl, t)R(t, t+ Tf )}

= Ê
{(

− ζ1(Tl)H(t− Tl) + ζ2(Tl) Ĥ(t− Tl) +
(αL − α̂L)(1− e−α̂LTl)

(r + αD)(r + αL)α̂L
GL(t− Tl) + B̄(t− Tl, t)

)
×
(
− ζ1(Tf )H(t) + ζ2(Tf ) Ĥ(t) +

(αL − α̂L)(1− e−α̂LTf )

(r + αD)(r + αL)α̂L
GL(t)

)}
,

(A-97)

where ζ1(· ) and ζ2(· ) are as defined in equations (A-87) and (A-88). Define

(A-98) η :=
τ
1/2
0 τ̂

1/2
0 +N τ̂

1/2
I τ

1/2
I

τ + αS − α̂S
, m1 := −a(τ̂

1/2
0 η − τ

1/2
0 )2

αS + τ
ζ1(Tf ),

(A-99) m3 := (τ̂
1/2
0 η − τ

1/2
0 )τ̂

1/2
0

(
−a (ζ2(Tf )− η ζ1(Tf ))

αS + τ
+

−ζ1(Tf )(−a η + b)

α̂S

)
,

(A-100)

m4 := ζ1(Tf )(τ
1/2
0 −τ̂ 1/20 η)

(
τ̂
1/2
0 (−aη + b)

α̂S
+
σSΩ

1/2CGτ
1/2
0 + σD(r + αS)

(r + αD) (r + αS)
+
a(τ̂

1/2
0 η − τ

1/2
0 )

αS + τ

)
,

(A-101) m2 := − τ̂0 (−aη + b)

α̂S
(ζ2(Tf )− η ζ1(Tf )), m5 := −(ζ2(Tf )− η ζ1(Tf )) τ̂

1/2
0

ζ1(Tf ) (τ
1/2
0 − τ̂

1/2
0 η)

m4,

(A-102) n1 := −ζ1(Tf )N
a(τ̂

1/2
I η − τ

1/2
I )2

αS + τ
, n2 := −(−ζ1(Tf )η + ζ2(Tf ))

Nτ̂I(−aη + b)

α̂S
,

(A-103) n3 := Nτ̂
1/2
I (τ̂

1/2
I η − τ

1/2
I )

(
−a

αS + τ
(−ζ1(Tf )η + ζ2(Tf ))− ζ1(Tf )

−aη + b

α̂S

)
,

(A-104)

n4 := −Nζ1(Tf )(τ 1/2I − τ̂
1/2
I η)

(
−a(τ 1/2I − τ̂

1/2
I η)

αS + τ
+
τ̂
1/2
I (−aη + b)

α̂S
+

σSΩ
1/2CGτ

1/2
I

(r + αD)(r + αS)

)
,

(A-105) n5 := −(ζ2(Tf )− η ζ1(Tf )) τ̂
1/2
I

ζ1(Tf ) (τ
1/2
I − τ̂

1/2
I η)

n4.
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Then direct calculations show that Cov{R(t− Tl, t), R(t, t+ Tf )} is a function of Tl and

Tf given by

Cov{R(t− Tl, t), R(t, t+ Tf )} =

− ζ1(Tf ) (−ζ1(Tl) (q11 − q12 η) + ζ2(Tl) (q12 − q22 η)) e−(αS+τ)Tl

+ (ζ2(Tl) q22 − ζ1(Tl) q12) (−ζ1(Tf ) η + ζ2(Tf )) e−α̂STl +
m1 + n1

2(αS + τ)
(1− e−2(αS+τ)Tl)

+
m2 + n2

2α̂S
(1− e−2α̂STl) +

m3 + n3

αS + τ + α̂S
(1− e−(αS+τ+α̂S)Tl) +

m4 + n4

αS + τ
(1− e−(αS+τ)Tl)

+
m5 + n5

α̂S
(1− e−α̂STl) +

σ2
L(α

2
L − α̂2

L)(1− e−α̂LTl)(1− e−α̂LTf )

2α̂3
L(r + αD)2(r + αL)2

.

(A-106)

To calculate the correlation coefficients of R(t− Tl, t) and R(t, t+ Tf ), we now calculate

variances Var{R(t− Tl, t)} and Var{R(t, t+ Tf )}. Define

(A-107) k1 :=
a2(τ̂

1/2
0 η − τ

1/2
0 )2 + a2N(τ̂

1/2
I η − τ

1/2
I )2

(αS + τ)2
, k2 :=

(−aη + b)2(τ̂0 +Nτ̂I)

α̂2
S

,

(A-108) k3 :=
2a(−aη + b)(τ̂

1/2
0 (τ̂

1/2
0 η − τ

1/2
0 ) +Nτ̂

1/2
I (τ̂

1/2
I η − τ

1/2
I ))

(αS + τ)α̂S
,

(A-109) ck1 :=
τ̂
1/2
0 (−aη + b)

α̂S
+
σSΩ

1/2CGτ
1/2
0 + σD(r + αS)

(r + αD) (r + αS)
+
a(τ̂

1/2
0 η − τ

1/2
0 )

αS + τ
,

(A-110) ck2 := N

(
−a(τ 1/2I − τ̂

1/2
I η)

αS + τ
+
τ̂
1/2
I (−aη + b)

α̂S
+

σSΩ
1/2CGτ

1/2
I

(r + αD)(r + αS)

)
,

(A-111) k4 := −2a
ck1 (τ̂

1/2
0 η − τ

1/2
0 ) + ck2 (τ

1/2
I η − τ

1/2
I )

αS + τ
,

(A-112) k5 := −2(−aη + b)(ck1 τ̂
1/2
0 + ck2 τ̂

1/2
I )

α̂S
, k6 := c2k1 +

1

N
c2k2.
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Then direct calculations show that Var{R(t− Tl, t)} and Var{R(t, t+ Tf )} are

Var{R(t− Tl, t)} = q11 ζ
2
1 (Tl) + q22 ζ

2
2 (Tl)− 2q12ζ1(Tl)ζ2(Tl) +

k1
2(αS + τ)

(1− e−2(αS+τ)Tl)

+
k2
2α̂S

(1− e−2α̂STl) +
k3

αS + τ + α̂S
(1− e−(αS+τ+α̂S)Tl) +

k4
αS + τ

(1− e−(αS+τ)Tl)

+
k5
α̂S

(1− e−α̂STl) + k6Tl +
σ2
L

α̂3
L(r + αD)2(r + αL)2

(
α2
Lα̂LTl − (α2

L − α̂2
L)(1− e−α̂LTl)

)
,

(A-113)

Var{R(t, t+ Tf )} = q11 ζ
2
1 (Tf ) + q22 ζ

2
2 (Tf )− 2q12ζ1(Tf )ζ2(Tf ) +

k1
2(αS + τ)

(1− e−2(αS+τ)Tf )

+
k2
2α̂S

(1− e−2α̂STf ) +
k3

αS + τ + α̂S
(1− e−(αS+τ+α̂S)Tf ) +

k4
αS + τ

(1− e−(αS+τ)Tf )

+
k5
α̂S

(1− e−α̂STf ) + k6Tf +
σ2
L

α̂3
L(r + αD)2(r + αL)2

(
α2
Lα̂LTf − (α2

L − α̂2
L)(1− e−α̂LTf )

)
.

(A-114)

Then, using equations (A-106), (A-113), and (A-114), we get the correlation coefficient of

R(t−Tl, t) and R(t, t+Tf ). From equations (A-106) and (A-113), we obtain the regression

coefficient of regressing the cumulative return R(t, t+ Tf ) on R(t− Tl, t) as

(A-115) bTf ,Tl =
Cov{R(t− Tl, t), R(t, t+ Tf )}

Var{R(t− Tl, t)}
.

Consider the case when traders are correct on average, so that the correct precision is

τ̂I = (τH + (N − 1)τL)/N to each signal. Since τ̂0 = τ0 and Ω̂ = Ω hold in this case, the

two signals coincide, yielding Ĥn(t) = Hn(t). It can be shown that

Cov{R(t− T, t), R(t, t+ T )} = Ê{R(t− T, t)R(t, t+ T )}

=
σ2
SΩ

(r + αD)2
(1− e−αST )2

α2
S

τ − CG(τ0 +Nτ̂
1/2
I τ

1/2
I )

τ

(
1 +

τ

2αS
+
CG(αS − r)(τ0 +Nτ̂

1/2
I τ

1/2
I )

2αS(r + αS)

)

− σ2
SΩN(τ̂

1/2
I − τ

1/2
I )CG

(r + αD)2
(1− e−(αS+τ)T )2

(αS + τ)2
r + αS + τ

(r + αS)τ

(
CGτ0(τ̂

1/2
I − τ

1/2
I )

2(r + αS)

αS + τ − r

αS + τ
+ τ̂

1/2
I

)

+
σ2
L(α

2
L − α̂2

L)(1− e−α̂LT )2

2α̂3
L(r + αD)2(r + αL)2

.

(A-116)

The dampening effect (CG < 1) leads to momentum (positive autocorrelation) in returns.
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If αL = α̂L, for the limiting case studied in Section 1.3 with τL = 0, τ0 → 0, and N → ∞,

the dampening effect is substantial; it can be shown that

(A-117) Cov{R(t− T, t), R(t, t+ T )} =
(1− e−αST )2

α2
S

(
1 +

τ

2αS

)
− (1− e−(αS+τ)T )2

(αS + τ)2
> 0.

For general cases, from (A-116), the autocovariance of holding-period returns tends to be

positive when τ is large relative to τ0 and αS. In extensive numerical analysis of equation

(A-116) over a large range of parameters, we always find a positive autocovariance.
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B. Online Appendix

B.1. An Analogous One-Period Competitive Model

A risky asset with random liquidation value v ∼ N(0, 1/τv) is traded for a safe numeraire

asset. Each of N traders n = 1, . . . , N is endowed with Sn shares of a zero-net-supply risky

asset, implying
∑N

n=1 Sn = 0. Traders observe signals about the normalized liquidation

value τ
1/2
v v. All traders observe a public signal i0 := τ

1/2
0 (τ

1/2
v v) + e0 with e0 ∼ N(0, 1).

Each trader n observes a private signal in := τ
1/2
n (τ

1/2
v v)+ en with en ∼ N(0, 1). The asset

payoff v, the public signal error e0, and N private signal errors e1, . . . , eN are independently

distributed.

Traders agree about the precision of the public signal τ0 and agree to disagree about the

precisions of private signals τn. Each trader is “relatively overconfident,” believing his own

signal has a high precision τn = τH and other traders’ signals have low precision τm = τL

for m ̸= n, with τH > τL ≥ 0.

Let En{. . .} and Varn{. . .} denote trader n’s expectation and variance operators condi-

tional on all signals i0, i1, . . . , iN . Define “total precision” τ by

(B-1) τ := (Varn{v})−1 = τv (1 + τ0 + τH + (N − 1) τL) .

The projection theorem for jointly normally distributed random variables implies

(B-2) En{v} =
τ
1/2
v

τ

(
τ
1/2
0 i0 + τ

1/2
H in + (N − 1) τ

1/2
L i−n

)
.

Each trader submits a demand schedule Xn(p) := Xn(i0, in, Sn, p) to a single-price auc-

tion. An auctioneer calculates the market-clearing price p := p[X1, . . . , XN ].

Trader n’s terminal wealth is

(B-3) Wn := v (Sn +Xn(p))− p Xn(p).

Each trader maximizes the same expected exponential utility function of wealth En{− e−AWn}
using his own beliefs about τH and τL to calculate the expectation.

Trader nmaximizes his expected utility, or equivalently he maximizes En{Wn}−1
2
AVarn{Wn}.
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He chooses the quantity to trade xn that solves the maximization problem

(B-4)

max
xn

{
τ
1/2
v

τ

(
τ
1/2
0 i0 + τ

1/2
H in + (N − 1)τ

1/2
L i−n

)
(Sn + xn)− p xn −

A

2τ
(Sn + xn)

2

}
.

The first-order condition with respect to xn yields

(B-5) x∗n = 1
A

(
τ 1/2v

(
τ
1/2
0 i0 + τ

1/2
H in + (N − 1)τ

1/2
L i−n

)
− p τ

)
− Sn.

The market-clearing condition
∑N

n=1 x
∗
n = 0 implies

(B-6) p∗ = 1
N

N∑
n=1

En{v} =
τ
1/2
v

τ

(
τ
1/2
0 i0 +

τ
1/2
H +(N−1)τ

1/2
L

N

N∑
n=1

in

)
.

Substituting (B-6) into (B-5) yields

(B-7) x∗n = 1
A

(
1− 1

N

)
τ 1/2v (τ

1/2
H − τ

1/2
L )(in − i−n)− Sn.

Thus, each trader trades on the difference between his signal in and the average of all N

signals. Equation (B-6) implies that the equilibrium price is a weighted average of traders’

valuations about the fundamental value of the asset with weights summing to one.

Define the constant CJ as the ratio of the average of the square roots to the square root

of the average of precisions:

(B-8) CJ :=
(

1
N
τ
1/2
H + N−1

N
τ
1/2
L

) (
1
N
τH + N−1

N
τL
)−1/2

.

We can rewrite the price as

(B-9) p∗ = 1
N

N∑
n=1

En{v} =
τ
1/2
v

τ

(
τ
1/2
0 i0 + CJ

(
1
N
τH + N−1

N
τL
)1/2 N∑

n=1

in

)
.

When traders are relatively overconfidence (τH > τL), Jensen’s inequality implies that

CJ < 1. Therefore, the “static dampening effect” of CJ < 1 shows up in our one-period

model.
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B.2. The Expected Holding-Period Returns for Cases with
Absolute Overconfidence

We now look at the general case when investors use an empirically incorrect value for

the total precision of the signals and parameter values of the short-term growth rate. The

results when use correct values of the parameter values can be obtained by setting α̂S = αS

and σ̂S = σS. We assume αS + τ > α̂S.
1 Define

(B-10) ν1 :=
τ
1/2
0 τ̂

1/2
0 +N τ̂

1/2
I τ

1/2
I

αS − α̂S + τ
, ν3 :=

CG(r + α̂S) (2α̂S + τ̂)1/2

(r + αS) (2αS + τ)1/2
ν1,

(B-11) ν2 = ν1 +
(r + αS) Ω̂

1/2 (σ̂S − ν3σS)

CG (r + αS + τ) Ω1/2 σS
,

and

(B-12) T2 :=
1

αS + τ − α̂S
ln

(
CG σS (r + αS + τ) Ω1/2

(
H(t)− ν1Ĥ(t)

)
(r + αS) Ω̂1/2 (σ̂S − ν3σS) Ĥ(t)

)
,

it can be shown that T2 > 0 if and only if H(t) > ν2Ĥ(t). We also have

dÊt{R(t, t+ T )}
dT

=
e−(αS+τ)T

(r + αD) (r + αS)

(
− CG σS (r + αS + τ) Ω1/2 (H(t)− ν1Ĥ(t))

+ (r + αS) Ω̂
1/2 (σ̂S − ν3σS) Ĥ(t) e(αS+τ−α̂S)T

)
.

(B-13)

We assume α̂L = αL to examine the return patterns when traders have empirically

incorrect beliefs about the total precision of the signals and parameter values of the short-

term growth rate. The following proposition shows that there are only four possible patterns

of the expected holding period return: only momentum, only mean-reversion, first mean-

reversion and then momentum, first momentum and then mean-reversion.

PROPOSITION 1: Assume α̂L = αL. When investors use empirically incorrect beliefs
about both the total precision of the signals and parameter values of the model, we obtain
four cases:

1) If H(t) ≤ ν1Ĥ(t) and Ĥ(σ̂S−ν3σS) ≥ 0, then Êt{R(t, t+T )} monotonically increases
in T .

1The case with αS + τ < α̂S is similar.
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2) If H(t) ≤ ν1Ĥ(t) and Ĥ(σ̂S − ν3σS) < 0, then Êt{R(t, t + T )]} increases in T for
T < T2 and decreases in T for T > T2.

3) If H(t) > ν1Ĥ(t) and Ĥ(σ̂S−ν3σS) ≤ 0, then Êt{R(t, t+T )} monotonically decreases
in T .

4) If H(t) > ν1Ĥ(t) and Ĥ(σ̂S − ν3σS) > 0, then Êt{R(t, t + T )} decreases in T for
T < T2 and increases in T for T > T2.

Proposition 1 implies that the expected holding period returns Êt{R(t, t + T )} can be

monotonically increasing or decreasing over time T , or it might be increasing first then

decreasing over time T , or it might be decreasing first then increasing over time T . Whether

Êt{R(t, t+ T )} increases or decreases in time T depends on the relative magnitude of the

current signals of H(t) and Ĥ(t). It also depends differences between empirically correct

and trader parameters for mean-reversion rate and volatility of the dividend growth, αS and

σS. Êt{R(t, t+ T )} converges to a constant when T → ∞. As illustrated in Proposition 1,

our model may generate short-run momentum and long-run reversal in the term structure

of the returns as observed in the data when the traders use incorrect values of the precisions,

mean-reverting rate, and the volatility of the growth rate of the dividend (τ̂ < τ , σ̂S ̸= σS,

and α̂S ̸= αS.

Assume investors are absolutely overconfident in the sense that τ̂ < τ , and assume the

investors use empirically correct parameters α̂S = αS and σ̂S = σS. For this case, it can be

shown that

(B-14) ν3 =
CG(2αS + τ̂)1/2

(2αS + τ)1/2
τ
1/2
0 τ̂

1/2
0 +N τ̂

1/2
I τ

1/2
I

τ
< 1,

since Ω̂ > Ω, CG < 1, and τ
1/2
0 τ̂

1/2
0 + N τ̂

1/2
I τ

1/2
I < τ. This implies that we will obtain

cases (1) and (4) in proposition 1 for positive signals Ĥ(t); specifically, we obtain (1) only

momentum or (4) short-run reversal and long-run momentum.

From proposition 1, if H(t)/ν1 ≤ Ĥ(t) < H(t)/ν2, and

(B-15) σS >
(r + αS) (2αS + τ)1/2

CG(r + α̂S) (2α̂S + τ̂)1/2
αS − α̂S + τ

τ
1/2
0 τ̂

1/2
0 +N τ̂

1/2
I τ

1/2
I

σ̂S,

where ν1 and ν2 are defined in (B-10) and (B-11), equation (B-15) implies that we tend to

have short-run momentum and long-run reversal if traders believe that the growth rate is

highly volatile (high values of σS) or highly persistent (low values of αS).

Now, we assume α̂L = αL and provide examples for two specific combinations of different
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parameter values (cases I and II ). When investors have correct beliefs about the total

precision of the information flow (τ̂ = τ) and other parameters of the model (α̂S = αS and

σ̂S = σS), we tend to have momentum in returns due to the price dampening effect, as

shown in Section 2.2 of our paper.

Case I. Figure 1 illustrates the correlation of the cumulative return for the case when

traders use correct short-term growth parameters (α̂S = αS and σ̂S = σS) but disagree

about the total precision of the information flow. Traders are absolutely overconfident

(τ > τ̂).2

2 4 6 8 10
T

-0.01

0.00

0.01

0.02

0.03

Corr[R(t-T,t), R(t,t+T)]

Figure 1. The correlation Corr{R(t − T, t), R(t, t + T )} against T , with τ > τ̂ , α̂S = αS, and

σ̂S = σS.

Proposition 1 in Appendix B.2 analytically proves that there are only two patterns of the

expected holding period return in this case: (1) only momentum, or (2) short-run reversal

followed by long-run momentum. Proposition 1 gives specific conditions for each pattern

to occur.

As illustrated in Figure 1, the momentum effect dominates return dynamics for most

situations. Strong momentum makes most of the correlations positive. Some correlations

have negative values at very short horizons.

Case II. Figure 2 illustrates a more general case when traders have incorrect beliefs

about both the total precision of the information flow and the parameters of the model.3

From Proposition 1 in Appendix B.2, the implied return patterns are empirically realistic

in the sense that the return exhibits momentum in the short run and mean-reversion in the

long run. There is mean reversion in returns if traders believe that the growth rate is more

2The parameters are r = 0.01, A = 1, αD = 0.1, αS = 0.2, σD = 0.5, σS = 0.1, τL = 0.019, τH = 0.1,
and N = 100, τ̂ = 1.6, and τ = 2.02.

3We assume τ = 2.02 > τ̂ = 1.6, α̂S = 1 > αS = 0.2, and σ̂S = 0.5 > σS = 0.1.
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persistent than it actually is. As our examples show, the expected holding-period return

exhibits different patterns depending on the parameter values.

2 4 6 8 10
T

-0.01

0.00

0.01

0.02

0.03

Corr[R(t-T,t), R(t,t+T)]

Figure 2. The correlation Corr{R(t − T, t), R(t, t + T )} against T , with τ > τ̂ , α̂S ̸= αS, and

σ̂S ̸= σS.

B.3. Predictive Power of Proxies for Momentum and Value
Effects Using Simulated Data

We examine the predictive power of past six month return Returnt−6m,t,i (a proxy for mo-

mentum effect) and the difference between current price and the present value of dividend

V aluet,i := Pi(t) − Di(t)/(r + αD) (a proxy for value effect) for simulation i in predict-

ing next month return Returnt,t+1m,i using data from 2000 simulations of monthly excess

return over 40 years based on the instantaneous excess return given in equation (38) and

the calibrated parameter values in Table 2. Our purpose is not to conduct an extensive

analysis on the predictive power of certain firm characteristics in predicting future returns.

Instead, the analysis in the subsection illustrates the opposing effects of momentum and

value in predicting returns.

We then run panel regressions on simulated data. Table 1 reports the regression coeffi-

cients and R2 of the following models:4

Model (F ) : Returnt,t+1m,i = a0 + a1Returnt−6m,t,i + et+1m,i,

Model (G) : Returnt,t+1m,i = b0 + b1Returnt−6m,t,i + b2V aluet,i + et+1m,i,

Model (H) : Returnt,t+1m,i = c0 + c1Returnt−6m,t,i + c2V aluet,i + c3Returnt−12m,t−7m,i

+ c4Returnt−36m,t−13m,i + c4Returnt−60m,t−37m,i + et+1m,i,

4We also run Fama–MacBeth cross-sectional regressions of models (F ), (G), (H), and (I) using simu-
lated data. The regression coefficients, t statistics, and R2 are similar to the panel regression results.
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Model (I) : Returnt,t+1m,i = d0 + d1Growth St,i + d2Growth Lt,i + et+1m,i,

where Returnt,t+1m,i is the return from next month, Returnt−6m,t,i is the six month cumu-

lative return from time t − 6m to time t, Returnt−12m,t−7m,i is the six month cumulative

return from time t− 12m to time t− 7m, Returnt−36m,t−13m,i is two year cumulative return

from time t− 36m to time t− 13m, Returnt−60m,t−37m,i is two year cumulative return from

time t− 60m to time t− 37m for simulation i. In addition, the scaled average short-term

growth rate is Growth St,i := CGḠS,i(t)/((r+αD)(r+αS)) and the scaled long-term growth

rate is Growth Lt,i := GL,i(t)/((r + αD)(r + αL)).

Table 1 illustrates that model (G) with two predictors obtains an R2 similar to model (H)

with five predictors. This implies that stock return from month t− 12m to month t− 7m,

stock return from month t− 36m to month t− 13m, and stock return from month t− 60m

to month t − 37m add little predictive power in predicting the next month return. Table

1 shows that the regression coefficients of a proxy for value effect V aluet,i are significantly

negative while the regression coefficients of a proxy for momentum effect Returnt−6m,t,i are

significantly positive. Consistent with our analytical result, Table 1 also shows that the

regression coefficient of Growth St,i is significantly positive and the regression coefficient

of Growth Lt,i is significantly negative.5

5Note that the t statistics are large in Table 1 because we run regression from 2000 independent
simulations of monthly excess return over 40 years based on the return dynamics of one stock given in
equation (38). The t statistics would be much smaller in a model with multiple stocks whose returns are
correlated. The purpose of the t statistics is to establish that the simulation error is small, not to predict
t statistics that would be obtained from actual, correlated data.
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Regression

Variable Model (F ) Model (G) Model (H) Model (I)

Returnt−6m,t,i
0.0167
(39.76)

0.0250
(57.61)

0.0257
(59.61)

V aluet,i
-0.0184
(-70.10)

-0.0208
(-69.92)

Returnt−12m,t−7m,i
0.0110
(23.62)

Returnt−36m,t−13m,i
0.0037
(16.48)

Returnt−60m,t−37m,i
0.0016
(7.72)

Growth St,i
1.1047
(152.87)

Growth Lt,i
-0.0166
(-81.51)

R2 0.0019 0.0109 0.0120 0.0334

Table 1—Panel Regression Results Using Simulated Data.

This table reports regression coefficients from panel regressions of models (F ), (G), (H),
and (I) using data from 2000 simulations of monthly excess return over 40 years based on
the instantaneous excess return given in equation (38). Standard errors are clustered by
simulation path and month, t statistics are in parentheses.


